
Summary of Hazardous Air Pollutant Emissions from Selected Petroleum Refineries

November 1991

Prepared for: U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Chemicals and Petroleum Branch Research Triangle Park, NC 27711

RADIAN

SUMMARY OF HAZARDOUS AIR POLLUTANT EMISSIONS FROM SELECTED PETROLEUM REFINERIES

Prepared by:

Radian Corporation 3200 E. Chapel Hill Road/Nelson Highway Research Triangle Park, North Carolina 27709

EPA Project Officer:

James F. Durham

U. S. Environmental Protection Agency
Office of Air Quality Planning and Standards
Chemicals and Petroleum Branch
Research Triangle Park, North Carolina 27711

Principal Investigators:

Roy V. Oommen
Richard F. Pandullo
Diana K. Stone
Marco A. Zarate

NOV 2 2002 EPA AIR DOCKET

November 1991

CONTENTS

Tables.	• •		V
1.0		ODUCTION	
		Project Objectives	
		Data Collection and Analysis Methodology	
	1.3	Database Limitations	1-3
2.0	PROC	ESS VENTS AND COMBUSTION SOURCES	2-1
	2.1		
		2.1.1 Process Heaters and Boilers	2-1
		2.1.2 Internal Combustion Engines and Turbines	2-2
		2.1.3 Flares	2-2
		2.1.4 Catalytic Cracking with CO Boilers	
		2.1.5 Sulfur Recovery Units	2-3
	2.2		
		Emission Factors for Process Vents and	
		Combustion Sources	2-3
		2.2.1 California Refinery Process Vent and	
		Combustion Source Database	2-3
		2.2.2 Development of Hazardous Air Pollutant	
		Emission Factors	2-5
		2.2.2.1 Analysis of Hazardous Air	
		Pollutant Emission Factors	
		(lb/yr per 1,000 bbl/sday	
		process charge capacity)	2-5
		2.2.2.2 Analysis of HAP Emission	
		Factors (lb/MMBtu)	2-6
	2 3	References	
3.0	EQUI:	PMENT LEAKS	3-1
	3.1	Background Information	3-1
		3.1.1 Valves	3-1
		3.1.2 Pumps and Compressors	3-1
		3.1.3 Pressure Relief Valves	3-2
		3.1.4 Flanges	3-2
	3.2	Method for Developing Hazardous Air Pollutant	
		Emission Factors for Leaking Equipment	3-2
		3.2.1 California Refinery Equipment Leak	
			3-2
		Database	
		Emission Factors	3-3
		3.2.3 Database Limitations and Variability	3-3
	2 2	-	2 5

gep.004 ii

4.0	STOR	AGE TAN	KS	• • • • • • • • • • • • • • • • • • • •	4-1
	4.1			rmation	
		4.1.1		Storage Tanks	
				Fixed Roof Tanks	
				External Floating Roof	* *
			4.1.1.6	Tanks	A _ 1
			4113	Internal Floating Roof	- L
			4.1.1.3	Tanks	4-2
		4.1.2	Types of	Petroleum Liquid Stored	7 2
		4.1.2			4-2
	4.2	Method			4-2
	7.2			s for Storage Tanks	1-2
		4.2.1		ia Refinery Storage Tank	T J
		4.0.1		· · · · · · · · · · · · · · · · · · ·	1-3
		4.2.2		ent of Hazardous Air Pollutant	7 3
		4.2.2		Factors	1 - 1
				Analysis of Tank Emission	4-4
			4.2.2.1	Factors	1 _ =
	4.3	Refere	ncec		4-6
	4.3	Verere	nces	• • • • • • • • • • • • • • • • • • • •	4-0
5.0	WAST	EWATER	COLLECTIO	N AND TREATMENT	5-1
	5.1				5-1
					5-1
		5.1.2		ion of Wastewater Collection	_
					5-2
				Drainage and Collection	_
					5-2
			5.1.2.2		5-2
				5.1.2.2.1 Oil-water	
				separators	5-2
				5.1.2.2.2 Air flotation	
				systems	5-3
			5.1.2.3		
				Processes	5-3
				5.1.2.3.1 Coagulation-	
				precipitation	5-4
				5.1.2.3.2 Filtration	5-4
				5.1.2.3.3 Equalization	5-4
			5.1.2.4	Secondary Treatment	
				Processes	5-4
	5.2			loping Hazardous Air Pollution	
				s for Wastewater Collection	
					5-5
		5.2.1		ia Refinery Wastewater	
					5-5
		5.2.2	Developme	ent of Hazardous Air Pollutant	
					5-5
		5.2.3		stewater Generated from	
			Refineri		5-9
	5.3				5-9
		5.3.1		s Air Pollutant Emission	
		n - 6 -	ractors.		5-9
	5.4	Kelere	ices		5-1

6.0		SFER 6-	1
	6.1	Background Information 6-	1
		6.1.1 Emissions from Loading Losses 6-	1
		6.1.1.1 Product Characteristics 6-	1
		6.1.1.2 Methods for Loading	
		and Unloading 6-	2
		6.1.1.3 Recent Loading History 6-	2
		6.1.2 Other Emission Sources 6-	3
	6.2	Method for Developing Hazardous Air Pollutant	
		Emission and Throughput Factors for Transfer	
		Operations 6-	3
		6.2.1 California Refinery Transfer	
		Database 6-	3
		6.2.2 Development of Emission Factors 6-	4
		6.2.2.1 Hazardous Air Pollutant	
		Emission Factor 6-	4
		6.2.2.2 Throughput Factor 6-	4
	6.3		5
		6.3.1 Hazardous Air Pollutant Emission	
		Factor 6-	5
		6.3.2 Throughput Factor 6-	5
	6.4	References 6-	6
7.0		C CHEMICAL RELEASE INVENTORY SYSTEM	
		ABASE	1
	7.1		_
		Inventory System Database	1
	7.2		_
		Inventory System	1

TABLES

Number		<u>Page</u>
2-1	Hazardous Air Pollutant Reported for Combustion Sources and Process Vents by Each Refinery	2-9
2-2	Reported Hazardous Air Pollutant Emissions by Process Vent and Combustion Source - Refinery A	2-11
2-3	Reported Hazardous Air Pollutant Emissions by Process Vent and Combustion Source - Refinery C	2-13
2-4	Reported Hazardous Air Pollutant Emissions by Process Vent and Combustion Source - Refinery D	2-16
2-5	Reported Hazardous Air Pollutant Emissions by Process Vent and Combustion Source - Refinery F	2-17
2-6	Reported Hazardous Air Pollutant Emissions by Process Vent and Combustion Source - Refinery G	2-19
2-7	Reported Hazardous Air Pollutant Emissions by Process Vent and Combustion Source - Refinery I	2-20
2-8	Reported Hazardous Air Pollutant Emissions by Process Vent and Combustion Source - Refinery J	2-21
2-9	Reported Hazardous Air Pollutant Emissions by Process Vent and Combustion Source - Refinery K	2-23
2-10	Reported Hazardous Air Pollutant Emissions by Process Vent and Combustion Source	2-25
2-11	Hazardous Air Pollutant Emission Factors for Process Vents and Combustion Sources	2-26
2-12	Hazardous Air Pollutant Emission Factors (10 ⁻⁶ lb/MMBtu)	2-29
3-1	Equipment Counts by Process	3-6
3-2	Hazardous Air Pollutant Emissions by Process for Refinery C (lb/yr)	3-7
3-3	Hazardous Air Pollutant Emissions by Process for Refinery I (lb/yr)	3-8

gep.004

3-4	Hazardous Air Pollutant Emissions from Refineries not in the Database (lb/yr)	3-9
3-5	Hazardous Air Pollutant Emission Factors (lb/yr/1,000 Equipment Counts)	3-10
4-1	List of Petroleum Liquid Types and Refinery Process Assignment	4-7
4-2	Hazardous Air Pollutants Reported by Each Refinery Included in Database	4-8
4-3	Storage Tank Emissions - Refinery A	4-9
4-4	Storage Tank Emissions - Refinery D	4-10
4-5	Storage Tank Emissions - Refinery E	4-11
4-6	Storage Tank Emissions - Refinery F	4-13
4-7	Storage Tank Emissions - Refinery G	4-15
4-8	Storage Tank Emissions - Refinery I	4-17
4-9	Storage Tank Emissions - Refinery J	4-22
4-10	Storage Tank Emissions - Refinery K	4-23
4-11	Reported Number of Tanks by Petroleum Liquid Type	4-27
4-12	Tank Emission Factors for Storage Tanks	4-28
5-1	Hazardous Air Pollutant Emissions by Wastewater Treatment Unit (lb/yr)	5-6
5-2	Flow Entering Treatment Unit (10 ⁶ gal/yr)	5-8
5-3	Average Hazardous Air Pollutant Emission Factors (lb/10 ⁶ gal)	5-10
5-4	Wastewater Generation Factors (gal/bbls)	5-11
5-5	Wastewater Volumes Calculated from Factors (106 gal/yr)	5-12
6-1	Annual Throughputs per Transfer Mode (10 ³ gal/yr)	6-7
6-2	Hazardous Air Pollutant Emissions from California Refineries (lb/yr)	6-8
6-3	Hazardous Air Pollutant Emission Factor, by Material Transferred (lb/10 ⁶ gallons throughput)	6-13

6-4	Annual Throughput Factor (10 ³ gal/yr/bbl/sday crude charge)	6-14
7-1	1989 Petroleum Refinery TRIS Database Emissions, Ranked by Frequency of Chemicals being Reported	7-3
7-2	1989 Petroleum Refinery TRIS Database Emissions, Ranked by Total Emissions	7-5

1.0 INTRODUCTION

Title III of the 1990 Clean Air Act amendments (CAA) requires the U. S. Environmental Protection Agency (EPA) to develop emission standards for 190 listed hazardous air pollutants (HAP's). One of the initial activities the EPA must undertake in responding to Title III is to identify the source categories that warrant regulation. After creating a list of source categories, EPA must then establish priorities among them and develop regulations for these categories over a 10-year period.

Petroleum refining is among of potential source categories to be regulated under Section 112 of the Clean Air Act.

Accordingly, for each subcategory of petroleum refinery HAP emissions, EPA must evaluate the baseline emission levels (including any existing controls), available control technologies, potential emissions reductions beyond baseline, and costs of control. Ultimately, EPA must decide which subcategories of petroleum refinery HAP emissions warrant regulation under Section 112.

1.1 PROJECT OBJECTIVES

The overall objective of this project was to estimate petroleum refinery emissions of the 190 HAP's listed in the CAA. The effort involved quantifying emissions from every refinery process unit for each of the following classifications: process vents, equipment leaks, storage tanks, transfer operations, and wastewater collection and treatment. The goal was to develop emission factors for 1) each HAP, 2) total HAP's, and 3) total volatile organic compounds (VOC). Furthermore, annual emissions of all HAP's were to be determined for each refinery process and for each individual refinery in the United States.

1.2 DATA COLLECTION AND ANALYSIS METHODOLOGY

The initial phase of the project involved collecting and assembling all currently available information for developing emission factors and emissions estimates. A search of the literature and available EPA databases was conducted for specific data on HAP's from refinery processes, as well as for the HAP content of refinery streams, (feedstocks, intermediates, products, and wastewater). The databases maintained by EPA's Office of Water were reviewed for pertinent information in estimating HAP emissions from wastewater, sludge, and other wastes produced in refinery processes. The EPA's Toxic Release Inventory System (TRIS) was reviewed for each U. S. refinery and tabulated by the specific and total HAP constituents emitted from the refining industry. In addition, annual emissions from each refinery and the number of refineries reporting an emission of each HAP were summarized from the TRIS database.

In the next phase, efforts focussed on data that would be available as a result of State/local agency air toxics initiatives. Specifically, it was known that the California air quality management districts were requiring data that would be potentially very useful to the project. Consequently, the specific information submitted by California refineries under California's Air Toxics "Hot Spots" Information and Assessment Act of 1987 (AB 2588) served as the primary source of information for the project. Compared to information collected in the initial screening activity discussed above, the AB 2588 data were judged to have the greatest potential for developing the speciated emission profiles necessary to quantify HAP emissions.

Several regulatory agencies in California were contacted, including: California Air Resources Board (CARB), South Coast Air Quality Management District (SCAQMD), Bay Area Air Quality Management District (BAAQMD), and Kern County Air Pollution Control District. Discussions with regulatory personnel indicated that the AB 2588 information was still being assembled and had undergone only minimal review by the various agencies. Therefore, it was decided that dealing directly with the

gep.004

respective refiners would be the most efficient way to collect the AB 2588 data.

California refiners were contacted to identify the specific information they have submitted under AB 2588. The Western States Petroleum Association (WSPA) was contacted to facilitate industry contact and data collection. Of particular interest to the project was industry methodology to quantify HAP emissions and actual test results (e.g., stack testing, stream HAP analyses). Eight companies and 11 refineries were represented in the AB 2588 reports submitted.

The last phase of the study involved an analysis of the data to derive HAP emission factors and develop methodologies for extrapolating these factors to a national level. Information from the California refineries was complied into a database (the California Refinery Database) and emission factors were derived for each subcategory of emission sources.

1.3 DATABASE LIMITATIONS

There are a number of shortcomings in the California refinery database that limit the usefulness of the results of this study. First, there were not enough data provided on all subcategories of emission sources to allow for the development of highly reliable HAP emission factors for all subcategories. For example, in some cases only one refinery reported HAP emissions for a particular emission source. Thus, the factors derived in these cases may not be representative of the entire industry. Specific details on the limitations of the database with respect to each emission source type (process vents, equipment leaks, etc.) are discussed in the relevant sections of this report.

Additionally, the AB 2588 reports were not required to include several CAA HAP's that are prevalent in refining operations. The missing HAP's include hexane, methyl-ethyl ketone (MEK) methyl-tert-butyl-ether (MTBE), and 2-2-4, trimethylpentane (iso-octane). Thus, no HAP emission factors were derived for these important pollutants; and therefore, total HAP emission factors could not be determined.

A second problem resulting from the database shortcomings was that not all project objectives were met. As indicated in Section 1.1, one goal was to develop nationwide HAP emission estimates for each emission source type. However, this was not possible because of the lack of representative emission factors for all emission source subcategories, coupled with a lack of sufficient data on certain key process parameters. For example, little information was provided on such key parameters as equipment counts by process unit, capacities of individual storage tanks, types of wastewater collection units present, and types of receiving vessels used to transfer products.

Another goal that could not be met was to provide estimates of total volatile organic compound (VOC) emissions. The AB 2588 reports included only the required compounds, not total VOC.

Despite these limitations, the study does provide useful information on emissions of a number of HAP's from petroleum refining operations. The HAP emission factors listed in this report could certainly be used to perform screening assessments that would yield a rough estimate of HAP emissions for a given facility and assist in determining where additional data are needed. Additionally, the study does indicate the relative contribution to total HAP emissions by each emission source type.

2.0 PROCESS VENTS AND COMBUSTION SOURCES

2.1 BACKGROUND INFORMATION

The major sources of atmospheric process emissions in petroleum refineries are sulfur recovery, fluid catalytic cracking (FCC) catalyst regeneration, and process heaters/boilers. Other less significant sources include vacuum distillation, coking, reformer catalyst regeneration, blowdown/flare systems, and compressor engine exhaust.

Sources of hazardous air pollutants (HAP's) reported by California refineries in AB 2588 reports include process heaters/boilers, internal combustion engines and turbines, flares, incinerators, FCC units with and without CO boilers, sulfur recovery units, and coke handling. Information about other process emission sources, control technology, and potential emissions may be found in <u>Assessment of Atmospheric Emissions from Petroleum Refineries¹ and <u>AB 2588 Emission Estimation</u> Techniques for Petroleum Refineries and Bulk Terminals.²</u>

2.1.1 Process Heaters and Boilers

Process heaters are used extensively in refining operations to heat feed materials and supply heat to distillation operations and reaction processes. They are designed to raise temperatures up to 1,000°F. The fuel may be refinery fuel gas, natural gas, fuel oil, or oil/gas mixtures.

Heat for refinery operations is also provided by steam that is produced in boilers. These boilers generally are fired by fuel oil, natural gas, or oil/gas mixtures.

Process heaters and boilers are the greatest source of combustion emissions in a refinery. The type and quantity of emissions from this source depend on the operating conditions of the unit and the type of fuel burned, as well as the nature of the contaminants in the fuel. Reported HAP emissions from process heaters and boilers include acetaldehyde, benzene,

formaldehyde, phenol, metals, radionuclides, and toluene, and in the metals category, arsenic, beryllium, cadmium, total chromium, hexavalent chromium, lead, manganese, mercury, nickel, and selenium compounds.

2.1.2 Internal Combustion Engines and Turbines

Reciprocating and gas turbine engines are used to power high-pressure compressors or in cogeneration applications. They are usually fired with natural gas or refinery fuel gas. High-pressure compressors are used in refinery process units such as hydrodesulfurization, catalytic reforming, hydrocracking, and in auxiliary facilities.

The HAP emissions reported from process gas-fired compressor engines include acetaldehyde, benzene, formaldehyde, metals, and phenol. For natural gas-fired engines, reported HAP emissions include acetaldehyde, benzene, formaldehyde, toluene, and xylene. 2.1.3 Flares

Flares in combination with blowdown systems are common to all petroleum refineries. Flares destroy gaseous emissions from the blowdown system by combustion. The gaseous emissions are hydrocarbon gases and other waste gas streams that are continuously or intermittently released from process equipment. The releases occur for various reasons, such as pressure control, emergency pressure relief, vent seal leaks, process equipment leaks, and release of noncondensable gases.

The type and amount of flare emissions depends on the composition of the gas being flared, the flow rate, and the flare type and design. There are elevated flares and enclosed ground-level flares. They may be designed for routine or emergency use.

Reported HAP emissions from flares include acetaldehyde, benzene, ethylene dibromide, ethylene dichloride, and metals.

2.1.4 Catalytic Cracking with CO Boilers

In catalytic cracking, catalysts are used to break down heavy oils into lighter products. Spent catalyst in fluidized catalytic cracking units (FCC) or moving-bed catalyst cracking units is transferred to a regenerator, where coke deposits are

removed from the surface of the catalyst by partial combustion. Because of incomplete combustion in the regenerator, the flue gas from the regenerator usually has a high carbon monoxide (CO) concentration.

The CO emissions from FCC units regenerators are generally controlled using CO boilers. Furthermore, CO boilers recover energy contained in the flue gas to produce process heat for various refinery processes.

Hazardous air pollutants that were reported in the process streams from catalytic crackers and CO boilers include benzene, formaldehyde, acetaldehyde, 1,3-butadiene, phenol, and metals.

2.1.5 Sulfur Recovery Units

Sulfur recovery units are used in petroleum refineries to convert hydrogen sulfide (H₂S) to elemental sulfur. In recent years, the Claus process has been the accepted method for sulfur recovery. However, because this process is not totally efficient in producing elemental sulfur, tail gas from the sulfur recovery unit can be a major source of emissions.

The tail gas from a Claus unit is incinerated before it passes to the atmosphere or is subjected to further treatment. Because the heating value of tail gas is low, auxiliary fuel is needed. Reported emissions from Claus tail gas incineration include carbonyl sulfide, carbon disulfide, benzene, and formaldehyde.

2.2 METHOD FOR DEVELOPING HAZARDOUS AIR POLLUTANT EMISSION FACTORS FOR PROCESS VENTS AND COMBUSTION SOURCES

The HAP emission factors for process vents and combustion sources were developed by compiling information from California refineries and generating correlations between HAP emissions and refinery process charge capacity, as explained below.

2.2.1 <u>California Refinery Process Vent and Combustion Source</u>
<u>Database</u>

The minimum information required to set up the database for combustion sources was:

- fuel type;
- annual average emissions by HAP (lb/yr);

gep.004

- fuel usage (Mbbl or MSCF); and
- refinery process assignment.

For process vents, the minimum information was annual average emissions by HAP (lb/yr). Additional information about emission controls and estimation method was compiled when available.

Seventeen HAP's were reported as being released from process vents and combustion sources. Table 2-1 shows the various HAP's per source type and fuel type (if applicable) reported by California refineries and included in the database.

Tables 2-2 through 2-9 present the HAP emissions per process vent and combustion source type per refinery process reported by each of the 8 California refineries included in this database. Emissions data for refineries B, E, and H are not included in the database because refineries B and H did not report emissions data by HAP, and refinery E did not provide information to determine emissions data per refinery process. The annual average emissions by HAP from refinery process vents and combustion sources were obtained from Form "PRO-Process and Emittents Data" used by California refineries to comply with AB 2588.

The emission estimation method used and reported varied for the specific emission sources and HAP's reported. In general, emission estimations were based on South Coast Air Quality Management District (SCAQMD) emission factors, Bay Area Air Quality Management District (BAAQMD) emission factors, and other available emission factors. When available, data from mandated source testing and from the Western States Petroleum Association's (WSPA) pooled source testing were also used. Catalytic crackers, CO boilers, and fuel oil-fired boilers are sources that must be tested under AB 2588 regulations.

The HAP emissions from process vents and combustion sources reported by each refinery in the database are summarized in Table 2-10. Process heaters and boilers are the main contributors to process emissions.

2.2.2 Development of Hazardous Air Pollutant Emission Factors

Based on an analysis of the tabulated emission data, HAP emission factors by refinery process were developed for each of the emission sources listed in Section 2.1. Emission factors expressed as lb/yr per 1,000 bbl/sday refinery process charge capacity were obtained.

Specific HAP emission factors were obtained by dividing the reported HAP emissions from each refinery (for a specific emission source, fuel type, and refinery process) by the total refinery process charge capacity of those refineries reporting the specific HAP. Types and capacities of refinery processes included in the database were taken from the Oil and Gas Journal's January 1990 Annual Refining Survey.³

Table 2-11 presents the HAP emission factors as lb/yr per 1,000 bbl/sday refinery process charge capacity developed for each refinery process included in the California refinery database. Refinery processes were assigned to each emission source using the general flow diagrams provided by the California refineries.

For combustion sources, additional emission factors expressed as lb/MMBtu are provided in Table 2-12. When the information from a California refinery did not include the Btu content for a specific fuel type, the average value reported by all California refineries in the database was used. Furthermore, because of the lack of fuel usage data for some sources, actual emissions data reported by some California refineries were not included in the emission factor calculations.

Because of the difficulty in identifying the refinery processes associated with a specific utility boiler or flare, only emission factors expressed as lb/MMBtu were developed.

2.2.2.1 Analysis of Hazardous Air Pollutant Emission
Factors (lb/yr per 1,000 bbl/sday process charge capacity). The
HAP emission factors for process vents and combustion sources
range from 0.00022 to 27.9 lb/yr per 1,000 bbl/sday. The lowest
emission factor is for mercury compounds (asphalt process heater

firing process gas) and the highest emission factor is for toluene (alkylation-polymerization turbine firing process gas).

For process heaters firing process gas, which was the most widely reported fuel type, the HAP's emitted in the greatest amount per 1,000 bbl of refinery process charge capacity were formaldehyde and toluene. Toluene was the HAP with the highest emission factor in crude units, vacuum distillation, thermal operations, catalytic cracking, catalytic reforming, catalytic hydrocracking, catalytic hydrotreating, lubes, asphalt, and hydrogen processes. Formaldehyde had the highest emission factor for the aromatics-isomerization process.

For boilers firing process gas, the highest HAP emission factors were obtained for acetaldehyde, formaldehyde, and toluene.

For internal combustion (IC) engines and turbines using process gas, benzene, formaldehyde, and toluene were the HAP's with the highest emission factors.

For FCC units with CO boilers firing process gas and CO gas, the highest emission factors were obtained for manganese and nickel compounds. For FCC units without CO boilers, the largest emission factor was developed for phenol.

It is important to mention that the representativeness of the data used to develop the HAP emission factors varies, depending on the emission source and fuel type (applicable for combustion sources). In some cases, only one refinery reported a particular emission source and/or fuel type. Table 2-1 may be useful in determining specific data representativeness.

2.2.2.2 <u>Analysis of Hazardous Air Pollutant Emission</u>

<u>Factors (lb/MMBtu)</u>. The HAP emission factors expressed as lb/MMBtu for process vents and combustion sources range from 0.00671 x 10⁻⁶ to 2.82 lb/MMBtu. The lowest emission factor is for phenol (FCC units with CO boiler firing fuel oil) and the highest emission factor is for manganese compounds (boiler firing fuel oil).

In general, these HAP emission factors follow the same pattern as the HAP emission factors expressed as lb/yr per

1,000 bbl/sday refinery process charge capacity. For IC engines and turbines using natural gas, the highest HAP emission factors were obtained for benzene and formaldehyde. For flares, toluene was the HAP with the highest emission factor. Table 2-1 may be useful in determining specific data representativeness.

2.3 REFERENCES

- U.S. Environmental Protection Agency, Assessment of Atmospheric Emissions from Petroleum Refining. Office of Research and Development. Washington, D.C. EPA-600/2-80-075. July 1980.
- Wright, D.A., M.N. Menon, and S.H. Peoples, Radian Corporation, AB 2588 Emission Estimation Techniques for Petroleum Refineries and Bulk Terminals - Final Report, prepared for Western States Petroleum Association, July 21, 1989.
- Thrash, L.A. Annual Refining Survey. Oil & Gas Journal. March 26, 1990.

TABLE 2-1. HAZARDOUS AIR POLLUTANT REPORTED FOR COMBUSTION SOURCES AND PROCESS VENTS BY EACH REFINERY

HAP	Process heaters ^a	Boilers ^b	IC Engines ^C	Turbines ^C	Flares ^c
Acetaldehyde	A,C,G,I,J,K	A,C,D,G,I,J,K	I,J	A, J	A,G,I,K
As Compounds	F,1,K	•	-	-	I,K
Benzene	A,F,G	A,D,G,I,K	F,I,J,K	A,F,J	C,G
Be Compounds	F	-	•	-	-
Cd Compounds	F,I,K	-	-	-	I,K
Cr Compounds	A,C,I,J,K	A,C,J,K	-	A	A,I,K
Cresols	-	•	•	•	•
Formal dehyde	A,C,F,G,I,J,K	A,C,D,G,I,J,K	F,I,J	A,F,J	A,C,G,I,K
Pb Compounds	F	I,K	-	-	-
Mg Compounds	A,C,F,I,K	A,C,I,J,K	•	A	A,I,K
Hg Compounds	A,C,F,I,J,K	A,C,I,J,K	-	A	A,I,K
Naptha lene	A,C,J,K	A,C,J,K	J	A,J	A,K
Ni Compounds	F,1,K	A,C,I,J,K	-	A	I,K
Phenoi	A,C,I,J,K	A,C,I,J,K	-	A	A,I,K
Se Compounds	-	-	-	-	•
Toluene	A,C,G,I,K	A,C,D,G,I,K	I,J	A,J	A,C,G,I
Xylene	K	D	I,J	j	•

(continued)

TABLE 2-1. (Continued)

HAP	Incinerators ^d	FCCU w/CO boiler ^e	FCCU w/o CO boiler ^e	Sulfur recovery units	Coke handling
Acetaldehyde	I	I,J	-	ĸ	•
As Compounds	-	С	K	•	•
Benzene		-	-	J	•
Be Compounds		C	-	•	•
Cd Compounds		c, I	-	-	-
Cr Compounds		С	•	-	-
Cresols		С	-	•	-
Formal dehyde		C,I,J	•	K	-
Pb Compounds		C, I	•	-	-
4g Compounds		C, I	K	-	•
Hg Compounds		c, 1	K	•	-
Napthalene		•	K	•	-
Ni Compounds		C,1,J	ĸ	•	K
Phenol		C, I	K	•	•
Se Compounds		С	-	-	-
Toluene		-	-	-	-
Xylene		•	•	•	-

^aProcess gas, natural gas and fuel oil.

bprocess gas, natural gas, fuel oil, and others.

^CProcess gas and natural gas.

dprocess gas.

eprocess gas, CO gas, fresh feed, and fuel oil.

(continued)

							HAP	Emissio	Emissions (lb/yr)				
	Process vent/							Man-					
Refinery process*	combustion source type	Fuel type	Heat input**	Acetal- dehyde	Benzene	Chro- comp.	Formal - dehyde	ganese comp.	Mercury comp.	Naph- thalene	Nickel comp.	Phenol	Toluene
н	Process heater	Process gas		4.04	0.7	90.0	16.1	9.0	0.04	4.25		1.05	63.5
X	Process heater	Process gas		88	7.1	0.92	30		0.92	18.3		1.53	
I	Process heater	Process gas		88.8	6.9	0.93	30.2		0.93	18.5		1.54	
مدا	Process heater	Process gas		15.5	3.8	0.23	62	3.08	0.16	16.3		4.01	244
×	Process heater	Process gas		2.42	0.5	0.04	67.67	0.48	0.03	2.54		0.63	38
۵	Process heater	Process gas		11.5	2.4	0.17	45.9	2.28	0.12	12.1		2.97	180
۵	Process heater	Process gas		1.76	0.3	0.03	7.05	0.35	0.03	1.85		94.0	27.7
ш	Process heater	Process gas		9.91	1.9	0.15	39.6	1.97	0.1	10.4		2.56	156
ш	Process heater	Process gas		7.78	1.7	0.12	31.1	1.54	0.08	6.17		2.01	122
SM.	Process heater	Process gas		6.61	1.3	0.1	26.4	1.31	0.07	96.9		1.71	104
ш	Process heater	Process gas		2.19	0.4	0.03	6.77	0.44	0.02	2.3		0.57	34.4
ы	Process heater	Process gas		2.29	0.4	0.03	9.18	0.46	0.03	2.41		0.59	36
(a)	Process heater	Process gas		0.32		0.005	1.27	90.0	0.003	0.33		0.08	S
Q	Boiler	Process gas		2.74		0.12	7.64	0.22	0.46	1.36	1.32	0.69	405
Q	Boiler	Process gas			~		55.6						
۵	Boller	Process gas		4.43		0.3	12.4	0.36	0.75	2.2	2.13	1.12	655
Q	Boiler	Process gas			2.4		9.89						
۵	Boiler	Process gas		2.18		0.1	6.08	0.18	0.37	1.08	1.05	0.55	322
۵	Boiler	Process gas			9.0		17.1						
Ш	Boiler	Process gas		2.26		0.1	6.31	0.18	0.38	1.12	1.09	0.57	334
ш	Boiler	Process gas			0.3		19.2						
4	Boiler	Process gas		2.97		0.13	8.27	0.24	0.5	1.47	1.43	0.75	438
5	Boiler	Process gas			1.5		41.5						
T)	Boiler	Process gas		2.64		0.12	7.38	0.21	0.45	1.31	1.27	0.67	391
5	Boller	Process gas			1.7		46.3						
Ĉŧ,	Turbine	Process gas		4.42	7.3	0.2	12.3	0.36	0.74	2.19	2.13	1.12	653
۵	Turbine	Process gas		4.36	6.7	0.2	12.2	0.35	0.73	2.16	2.1	1.1	644
۵	Turbine	Process gas		9.52	10.8	0.43	26.6	0.77	1.6	4.71	4.58	2.41	1,410
I	Turbine	Process gas		3.02	5.3	0.14	8.42	0.24	0.51	1.5	1.45	0.77	446

TABLE 2-2. REPORTED HAP EMISSIONS BY PROCESS VENT AND COMBUSTION SOURCE - REFINERY A

TABLE 2-2. (Continued)

							HAP		Emissions (lb/yr)				
	Process vent/							Man-					
Refinery process*	Refinery combustion process* source type	Fuel type	Heat Input**	Acetal- dehyde	Benzene	Chro- comp.	Formal- dehyde	ganese comp.	Mercury comp.	Naph- thalene	Nickel comp.	Phenol	Phenol Toluene
1	Boiler	Process gas		2.58	1.7	0.12	7.19	0.21	0.43	1.28	1.24	0.65	381
لع	Boiler	Process gas		2.68		0.12	7.48	0.22	0.45	1.33	1.29	0.68	396
Ča.	Boiler	Process gas			1.3		36.5						
Ħ	Flare	Process gas		2.64		0.008	10.6	0.1	0.005	2.77		0.68	41.5
4	Flare	Process gas		17.7		0.05	7.07	0.7	0.04	18.6		4.58	278
ħ	Flare	Process gas		20.4		90.0	81.6	0.81	0.04	21.4		5.28	320
		Total emissions by HAP	ons by HAP	326	6.89	4.91	935	17.9	9.97	169	21.1	41.3	8,130
*Refinery	*Refinery process code:												
A - Crude unif	unit		1 = 1 [vol. 4 vol.	m four / not a		,							

I - Alkylation/polymerization	J . Aromatics/isomerization	K . Lubes	L - Asphalt	M * Hydrogen	N = Coke	0 = Sulfur	UT - Utilities
A - Crude unit	B - Vacuum distillation	C - Thermal operations	D - Catalytic cracking	E - Catalytic reforming	F . Catalytic hydrocracking	G - Catalytic hydrorefining	H - Catalytic hydrotreating

** Confidential for this refinery.

	•									HAP Emis	Emissions (1b/yr)	/yr)							
	Process vent/		,	1	,		Beryl.	Cad.	chro.			746	Man.	Valley	40 8	(a) (a)		Selle.	
Refinery co process: 60	combustion source type	type	rue! usage/yr	Acetal.	dehyde comp.	Benzene	comp.	comp	comb.	Cresol	dehyde	comp.	comp.	comb.	thalene	comb.	Phenol	1	Toluene
	Boiler	Process gas	1,460,000 HBCF	3.2							23		0.59	0.0878	3.37	4.63	3.56		818
ur Bo	Boiler	Process gas	3,130,000 HSCF	1.07							7.67		0.197	0.0293	1.13	1.55	0.854		273
UT Bo	Boiler	Process gas	799,000 MSCF	4.31					0.151		4.33		0.158	0.978	1.15	0.374	0.137		224
UT Bo	Boiler	Process gas	5,060,000 MSCF	4.34					0.149		4.26		0.156	0.963	1.13	0.368	0.134		221
25	CO boiler	Process gas	1,030,000 MBCF							0.00298							0.00284		
00	CO boiler	99B 00	26,200,000 MSCF		4.2		4.2	31.4		0.325		28.9	176			121	0.313	*	
oo in	co boiler	Process gas	700,000 MBCF							0.00728							0.007		
8	CO boller	Fresh feed	7,430 няь1			0.183					3.2								
89	CO boller	Fresh feed	7,430 MBb1			0.183					3.2								
20	CO boiler	Process gas	664,000 MSCF							0.0069							0.00664		
ur co	CO boiler	Other	2,930 HGe1		1.86		1.86	1.86		0.000673		5.12		0.186		1.1	0.000644	6.05	
	CO boiler	** 8 8	26,200,000 MSCF		4.2		4.2	31.4		0.325		38.9	176			121	0.313	5	
	CO boller	Other	2,930 HG&1		1.86		1.86	1.86		0.021		5.12		0.186		17	0.0019	6.05	
5	CO boiler	Other	2,930 HOA1		1.86		1.86	1.86		0.000673		5.12		0.186		17	0.000644	6.05	
oo in	CO boiler	00 gas	857,000 HBCF							0.00249							0.00237		
00	CO boiler	3 6 00	26,200,000 MSCF		4.2		t .2	31.4		0.325		28.9	176			121	0.313	*	
UT/D CO	CO boiler	Puel oil	21 HGa1							0.0000233							0.000021		
UT CO	co boiler	Process gas	605,000 Macr							0.00629							0.00605		
8	CO boiler	Fresh feed	7,430 HBb1			0.183					3.2								
т со	CO boller	Process gas	4,400 MSCF							0.0000128							0.0000121		
B	Process heater	Process gas	379,000 HSCF	3.64					0.0537		11.8		0.48	0.0376	3.61		96.0		50.3
74	Process heater	Process gats	1,750,000 HSCF	2.61					0.0385		8.46		0,344	0.027	2.73		0.674		36
1d	Process heater	Process gas	3,290,000 HSCF	4.91					0.0725		15.9		0.648	0.0508	5.15		1.27		67.8
rd H	Process heater	Process gas	121,000 MSCF	0.18					0.00266		0.584		0.0238	0.00186	0.169		0.0465		2.48
1. Pr	Process heater	Process gas	25,000 HSCF	0.24					0.00354		0.776		0.0317	0.00248	0.251		0.062		3.31
18	Process heater	Process gas	143,000 MSCF	1.37					0.0202		4.45		0.181	0.0142	1.4		0.354		18.9
. Br	Process heater	Process gas	276,000 MSCF	2.65					0.0391		6.61		0.35	0.0274	3.78		0.686		36.6

TABLE 2-3. (Continued)

										HAP Emissi	Emissions (lb/yr)	'yr)							
	Process vent/		•				Beryl.	Cad. C	Chro.				Man.					Sele.	
Refinery	combustion	Fuel	Fuel	Acetal Arsenic	Arsenic		11 um	mium	m tum	•	Formel Lead		ganese	Mercury	Naph.	Mickel		nium m	
process*	source type	type	usage/yr	dehyde	comb.	Benzene	comp.	comp	comp. C	Cresol	dehyde	comb.	comb.	comp.	thalene	comb.	Phenol	comp. Toluene	luene
×	Process heater	Process gas	4,700,000 HSCF	18.9					0.197		6.44			0.197	3.94		0.329		18.2
NJ.	Process heater	Process gam	101,000 MSCF	0.971					0.0143		3.15		0.128	0.01	1.02		0.251		13.4
M4	Process heater	Process gas	4,050,000 MSCF	6.05					0.0893		9.61		0.798	0.0626	6.34		1.56		83.5 *
She .	Process heater	Process gas	484,000 MSCF	4.65				=	0.0686		15.1		0.613	0.0481	4.87		1.3		64.1
×	Process heater	Process gam	8,530,000 MSCF	34.4					0.358		11.7			0.358	7.16		0.597		142
<	Process heater	Process gam	1.760,000 MSCF	2.63				7	0.0388		8.53		0.347	0.0272	2.76		0.68		36.3
M	Process heater	Process gas	177,000 MSCF	1.7				_	0.0251		5.51		0.224	0.0176	1.78		0.439		23.5
a	Process heater	Process gas	2,520,000 MSCF	3.76				_	0.0555		12.2		967.0	0.0389	3.94		0.972		51.9
z.	Process heater	Process gas	360,000 MSCF	3.45					0.051		11.2		0.456	0.0357	3.62		0.833		11.1
M	Process heater	Process gas	637,000 MSCF	6.11				_	0.0902		19.8		0.807	0.0633	6.41		1.58		94.4
	Process heater	Process gas	11,000,000 MSCF	16.4		-			0.242		53.3		2.16	0.17	17.2		4.24		326
A, B, C,	Flare	Process gas	360,000 HBCF			0.115					23							•	0.057
. H.H.																			
			•						-				-	Mary and Mary Author (Mary 1)	-				11-00-00-00-00-00-00-00-00-00-00-00-00-0
		Total emissions by HAP	ne by HAP	607	409 18.2	0.489	18.2	99.8	4.39	1.02	809	102	249	9	196	421	47.6	270	4, 390

*Refinery process code:

A . Crude unit

B . Vacuum distillation

I - Alkylation/polymerization

J - Aromatics/isomerization

K . Lubes

L - Asphalt

M * Hydrogen

N . Coke

F . Catalytic hydrocracking G . Catalytic hydrorefining H . Catalytic hydrotreating

E - Catalytic reforming

D . Catalytic cracking C . Thermal operations

0 . Sulfur

UT - Utilities

TABLE	Z-4. REPORTED	HAF EMISSIONS	Ν	PROCESS V	ENT	AND COMB	VENT AND COMBUSTION SOURCE	SOURCE -	REFINERY D
	Process vent/					HAP	Emissions (lb/yr)	(1b/yr)	
Refinery	combustion	Fuel	Fuel	Acetal-			Formal-		
process.	source type	type	usage/yr	r dehyde	_	Benzene	dehyde	Toluene	Xylene
UT	Boiler	Other	59.4 M	MGal					
Τ'n	Boiler	Fuel oil	160 M	MGa1		Ħ			
UT	Boiler	Fuel oil	154 M	MGal		-		-	
Th	Boiler	Natural gas	45 M	MSCF	7	on	20	ĸ	71
ur	Boiler	Natural gas	46.9 M	MSCF	7	ø	21	ĸ	81
ur	Boiler	Natural gas	7.44 M	MSCF		-	3	-	
T)	Boiler	Natural gas	7.44 M	MSCF		-	m	-	
4	Process heater	Fuel oil	109 M	MGal				-	
æ	Process heater	Natural gas	. 19.3 M	MSCF	_	4	o	7	-
1	Process heater	Natural gas	2.86 M	MSCF		-	1		
æ	Process heater	Natural gas	22.5 M	MSCF	_	4	10	7	7
K	Process heater	Natural gas	31.7 M	MSCF	_	9	14	e	7
ı	Process heater	Natural gas	1.33 M	MSCF			1		
æ	Process heater	Fuel oil	769 M	MGal				-	
ı	Process heater	Natural gas	3.24 M	MSCF					
L)	Process heater	Natural gas	2.86 MS	MSCF		-	г		
-									
		Total emissions by HAP	ns by HA		7	39	84	22	8
*Refinery process	process code:	E = Catalytic reforming	reform1	Bu			Aromatics/150merization		O = Sulfur
A = Crude unit	unit	F = Catalytic hydrocracking	hydrocr	acking	×	Lubes		ס	UT - Utilities
B - Vacuu	 Vacuum distillation 	G = Catalytic hydrorefining	hydrore	fining	.1	Asphalt			
C - Therm	Thermal operations	H . Catalytic hydrotreating	hydrotr	eating	Σ	Hydrogen			
D - Catal	Catalytic cracking	I - Alkylation/polymerization	n/polyme	rization	z	Coke			

							HAP EI	Emissions (lb/yr)	(1b/yr)			
Refinery process*	Process vent/ combustion source type	Fuel	Fuel usage/yr	Arsenic comp.	c Benzene	Beryl- lium comp.	Cad- mium comp.	Formal- dehyde	Lead comp.	Man- ganese comp.	Mercury comp.	Nickel comp.
T.	Process heater	Natural gas	1,000 1	MSCF				0.2				
T.	IC engine	Natural gas	29,500 %	MSCF	45.5			2900				
5	IC engine	Natural gas	38,100 #	MSCP	58.7			7600				
ur.	IC engine	Natural gas	38,100	MSCF	58.7			7600				
	Process heater	Process gas	100,000	MSCF	2.3			74				
	Process heater	Process gas	100,000	MSC#	0.3			10				
	Process heater	Process gas	\$ 000,000	MSCF	0.3			20				
	Process heater	Natural gas	486,000	MSCF	3.1							
	Process heater	Process gas	300,000	MSCF	1			30				
	Process heater	Process gas	420,000	MSCF	1.4			4.5				
	Process heater	Process gas	94,000	MSCF	0.3			4.6				
	Process heater	Process gas	200,000	MSCF	0.7			2.1				
	Process heater	Process gas	93,000	MSCF	0.3			10				
	Process heater	Process gas						39				
	Process heater	Process gas	70,000	MSCF	0.3			7				
	Process heater	Process gas	4,000 %	MSCF	0.2			4.0				
	Process heater	Process gas	30,000	KSCF	0.1			e				
	Process heater	Fuel oil	4007	MGa1 1.2	7.2	0.3	-	24.6	1.7	1.6	0.2	76.6
	Process heater	Fuel oil	1001	MG&1 0.3	1.8		0.2	6.2	0.4	4.0		19.2
	Process heater	Process gas	100,000	MSCF	0.3			11				
	Process heater	Process gas						12				
	Process heater	Process gas	200,000	MSCF	0.7			23				
	Process heater	Fuel oil	400	MGal 1.2	7.2	0.3	-	24.6	1.7	1.6	0.2	9.91
	Process heater	Process gas	300,000	HSCF	1			29				
	Process heater	Process gas	300,000	MSCF	1			36				
	Process heater	Process gas	60,000 N	MSCF	0.2			6.2				
	Process heater	Process gas	400,000	MSCF	1.3			41				
	Process heater	Process gas	300,000	MSCF	-4			33				
	Process heater	Process gas	150,000 א	MSCP	0.5			16				
	Process heater	Process gas	660,000 M	MSCF	1.7			99				

_
70
ă
-
=
¤
-
u
~
~
•
•
'n.
ا ای
2-5.
LE
3LE
LE

								HAP E	Emissions (lb/yr)	(1b/yr)				
Refinery	Process vent/	Eug.	Fine		Arsento		Beryl-	Cad-	- Leunou	Load	Man-	Morona	14000	
process	source type	type	usage/yr		comp.	Benzene	comp.	comp.	dehyde	comp.	COMD.	comp.	Comp.	
×	Process heater	Process gas	100,000	MSCF		0.3			10					
ĩa.	Process heater	Process gas	830,000	MSCF		2.7			88					
5	Process heater	Process gas	000,099	MSCF		2.2			61.2					
=	Process heater	Process gas	100,000	MSCF		0.3			16					
ω	Process heater	Process gas	80,000	MSCF		0.3			89					
¥	Process heater	Process gas	55,000	MSCF		0.5			9					
מ	Process heater	Process gas	106,000	MSCF		0.3			10.6					
ပ	Process heater	Process gas	1,000,000	MSCF		3.1			100					
ш	Process heater	Process gas	000'06	MSCF		0.3			9.5					
æ	Process heater	Process gas	200,000	MSCF		0.7			22					
5	Process heater	Process gas	000'099	MSCF		1.7			99					
E	Process heater	Process gas	1,700,000	MSCF		9.6			240					
υ	Process heater	Process gas	230,000	MSCF		8.0			21.3					
v	Process heater	Process gas	200,000	MSCF		0.7			21					
Cu3	Process heater	Process gas	300,000	MSCF		-			32					
ħ	Process heater	Process gas	000'099	MSCF		1.7			99					
34	Process heater	Process gas	26,000	MSCF		0.1			9					
ပ	Process heater	Process gas	200,000	MSCF		0.7			23					
×	Process heater	Process gas	300,000	MSCF		7			30					
Ţ	Turbine	Process gas	1,300,000	MSCF		3.4			130					
5	Turbine	Process gas	1,300,000	MSCF		3.4			130					
ur	Turbine	Process gas	1,300,000	MSCF		3.4			130					
		Total entast	MW vd socies me		7 7	231	9		000	0	9 6			
*Refinery	*Refinery process code:								20/57	;	,	•	7117	
A - Crude unit	unit		I - Alkylat	1on/po	Alkylation/polymerization	1on								
B . Vacuu	. Vacuum distillation		J - Aromati	cs/1so	Aromatics/1somerization	<u> </u>								
C - Therm	- Thermal operations		K - Lubes											
D - Catal	. Catalytic cracking		L - Asphalt											
E . Catal	Catalytic reforming		M - Hydrogen	ď										
F - Catal	Catalytic hydrocracking		N - Coke											
G - Catal	Catalytic hydrorefining		0 - Sulfur											
H - Catal	- Catalytic hydrotreating		UT - Utilities	163										

TABL	TABLE 2-6.	REPORTED	HAP EMISS	CONS BY	PROCESS	VENT AND	REPORTED HAP EMISSIONS BY PROCESS VENT AND COMBUSTION SOURCE - REFINERY G	SOURCE -	REFINERY G	
	Proces	s vent/						HAP E	Emissions (lb/yr)	yr)
Refinery	combustion	tton	Fuel		Fuel		Acetal-		Formal-	
Process*	source	type	type		บธลา	usage/yr	dehyde	Benzene	dehyde	Toluen
UT	Boiler		Process	s gas	91,	91,500 MSCF	0.07	2.81	13.5	5.11
UT	Boiler		Process	SQAB	91,	91,500 MSCF	0.07	2.81	13.5	5.11
Ħ	Process	s heater	Process	S GAB	96,	96,500 MSCF	0.08	2.98	14.3	5.41
ĵz,	Process	s heater	Process	8 0 0 8	103,	103,000 MSCF	0.08	3.16	15.1	5.74
4	Process	s heater	Process	8 948	875,	875,000 MSCF	0.73	27	129	69
ĵų,	Process	s heater	Process	8 00 00	41,	41,700 MSCF	0.03	1.28	6.2	2.34
М	Proces	s heater	Process	8 0 0 8	699	669,000 MSCF	0.28	10.3	49.3	18.7
Ħ	Proces	s heater	Process	8 008	91,	91,000 MSCF	5.68	2.8	13.4	5.08
ĵi,	Proces	s heater	Process	S GAB	17,	17,500 MSCF	0.01	0.54	2.6	0.98
Ħ	Proces	s heater	Process	s gas	72,	72,000 MSCF	90.0	2.21	1.6	4.02
K	Proces	s heater	Process	s gas	311,000	000 MSCF	0.26	9.58	45.9	17.4
*	Flare		Natural	l gas		173 MSCF	0.02	91.0	0.01	1.38
			Total	emissio	Total emissions by HAP	Q.	7.4	66.2	304	120
					,					

*Re	*Refinery process code:	
A	A - Crude unit	I - Alkylation/polymerization
œ.	B - Vacuum distillation	J = Aromatics/isomerization
Ü	C - Thermal operations	K - Lubes
9	D = Catalytic cracking	L - Asphalt
М :	E - Catalytic reforming	M = Hydrogen
E.	F - Catalytic hydrocracking	N * Coke
0	G - Catalytic hydrorefining	o = Sulfur
=	H - Catalytic hydrotreating	UT - Utilities

### Process vent/								HAP Em1	Emissions (1b/yr)	lb/yr)					
Comparation			Heat				Cad-			Man-					
Decess Bources Lype VF		Fuel	input/	Acetal-	Arsenic		m1 um	Formal-	Lead	ganese	Mercury	Nickel			
Process heater Process gas 76.5 0.0675 0.0193 49	- 1	type	Уľ	dehyde		Benzene	comp.	dehyde	comb.	comb.	comb.	comp.	Phenol	Toluene	Xylene
Process heater Process que 2.07 0.0675 0.0195 49		Process	19.00	76.5				208		2.4	0.533	0.266	21.3	159	
Process heater Process qas 2.09 0.0661 0.0195 49		Process	10.0	2.07	0.0675		0.0193	49.3		1.31	0.0964	0.154	1.82		
Process heater Process gas 2.11 0.0866 0.0196 50		Process	10.5	2.09	0.0681		0.0195	8.64		1.32	0.0973	0.156	1.84		
Process heater Process gas 2.23 0.0725 0.0207		Process	10.5	2.11	0.0686		0.0196	50.2		1.33	0.098	0.157	1.85		
Process heater Process gas 39.2 2.		Process	90	2.23	0.0725		0.0207	53		1.41	0.104	0.166	1.96		
Process heater Process gas 0.17 1.51		Process	50	39.2				106		1.23	0.273	0.136	10.9	81.2	
Incinerator Process gas 1.51 1.31 1.70 1.41 1.31 1.31 1.70 1.41 1.31		Process	90	8.17				22.2		0.256	0.0569	0.0285	2.78	16.9	
Incinerator Process gas 1.31 170 140			9.0	1.51				4.12) 	
Boller			90	1.31				3.56							
Boller			10.8	3.77		170		14.1	0.244	11.9	33.7	1.83	1.7	917	
Flate			80	3.63		164		13.6	0.234	11.5	32.5	1.76	1.64	883	
Flate			198	0.00333	0.0072		0.0020	0.0792		0.0021	0.00015	0.0165	0.00292		
Co boiler CO boiler CO boiler CO boiler CO boiler Process gas 1.35 Process heater Process gas 1.35 IC engine Process gas 1.35 IC engine Process das 1.35 IC engine Process gas 1.35 Process heater Process gas 1.35 Process heater Process gas 0.0131 0.0108 Process heater Process gas 0.0133 0.0069 Process heater Process gas 0.0146 0.0019 Process heater Process gas 0.0146 0.0019 Process heater Process gas 0.0578 0.0188 0.0018 Process heater Process gas 0.0578 0.0188 0.0053 13 Process heater Process gas 0.0586 0.0168 42 Process gas 0.0578 0.0098 0.00168 42 Boiler Boiler Process gas 0.0098 0.0217 0.0061 0.22 Boiler Process gas 0.00998 0.0217 0.0061 0.26 Flare Process gas 0.00998 0.0217 0.0061 0.0061 Process code: - Crude unit - Vacuum distillation - F = Catalytic Reforming 1 = -			601	0.00333	0.0072		0.0020	0.0792		0.0021	0.00015	0.3	0.00292		
Coboller			80	1.21			29.6	2.07	475	369	9.6	302	40.7		
Process heater Process gas 0.444 0.0145 0.0041 10			80	1.35			32.9	2.3	527	409	10.9	335	45.2		
Companie	Process heate	Process	8 0	0.444	0.0145		0.0041	10.6		0.281	0.0207	0.0331	0.391		
C engine	Process heats	Process	90	1.33				3.62		0.0418	0.00929	0.0046	0.371	2.76	
Companie	IC engine		848	1.35		4.94		36.4					•	1.8	1.8
Process heater Process das 0.331 0.0108 0.0030 7. Process heater Process das 0.213 0.0069 0.0019 5. Process heater Process das 0.446 0.0145 0.0041 10 Process heater Process das 0.578 0.0586 0.0168 42 Process heater Process das 0.578 0.0188 0.0053 13 Process heater Process das 0.278 0.0092 0.0053 13 Boller Process das 0.275 0.0092 0.0026 52 Boller Process das 0.486 1.78 13 IC engine Process das 0.00998 0.0217 0.0061 0.2 Flare Process gas 0.00998 0.0217 0.0061 0.2 62.6 8 Flare Process gas 0.00998 0.0217 0.0061 0.2 62.6 8 Flare Process gas 0.00998 0.0217 0.0061	IC engine		80	1.35		4.94		36.4						8 - 1	
Process heater Process gas 0.213 0.0069 0.0019 5.	Process heate	Process	9 0	0.331	0.0108		0.0030	7.89		0.21	0.0154	0.0247	0.291		
Process heater Process gas 0.446 0.0145 0.0041 10	Process heate	Process	8.4	0.213	6900.0		0.0019	5.07		0.135	0.0099	0.0158	0.187		
Process heater Process das 1.54 0.0502 0.0144 36 Process heater Process das 1.6 0.0586 0.0168 42 Process heater Process das 0.284 0.0092 0.0055 13 Boller Process das 0.284 0.0092 0.0026 6. Boller Process das 0.486 1.78 13 IC englne Process das 0.486 1.78 13 IC englne Process gas 0.0099 0.0217 0.0061 0.2 Flare Process gas 0.0099 0.0217 0.0061 0.2 Goke handling Process gas 0.0099 0.0217 0.0061 0.2 Total emissions by HAP 162 0.518 347 62.6 8 effnery process code: E = Catalytic Reforming I = - Vacuum distillation F = Catalytic Reforming J =		Process	86	0.446	0.0145		0.0041	10.6		0.282	0.0208	0.0332	0.392		
Process heater Process gas 1.8 0.0586 0.0168 42 Process heater Process gas 0.578 0.0188 0.0053 13 Process heater Process gas 0.284 0.0092 0.0026 6. Boller Process gas 3.46 0.0026 0.0026 6. Boller Process gas 0.486 1.78 13 IC engine Process gas 0.0486 1.78 13 IC engine Process gas 0.0099 0.0217 0.0061 0.2 Flare Process gas 0.0099 0.0217 0.0061 0.2 Flare Process gas 0.0099 0.0217 0.0061 0.2 Coke handling Process gas 0.0099 0.0217 0.0061 0.2 Total emissions by HAP 162 0.518 347 62.6 8 Flare Process code: E = Catalytic Reforming I = Vacuum distillation F = Catalytic Hydrocracking I =		Process	8 0	1.54	0.0502		0.0144	36.7		976.0	0.0717	0.115	1.36		
Process heater Process das 0.578 0.0188 0.0053 13 Process das 0.284 0.0092 0.0026 6. Boller Process gas 3.46 2.00 2.00 Boller Fuel oil 2.75 1.78 13 IC engine Process gas 0.486 1.78 13 IC engine Process gas 0.0099 0.0217 0.0061 0.2 Flare Process gas 0.0099 0.0217 0.0061 0.2 Coke handling Total emissions by HAP 162 0.518 347 62.6 8 Funde unit E - Catalytic Reforming I - Catalytic Hydrocracking I - Catalytic Hydrocracking J -	Process heate	Process	8 0	1.8	0.0586		0.0168	42.9		1.14	0.0838	0.134	1.58		
Process heater Process gas 0.284 0.0092 0.0026 6.	Process	Process	80	0.578	0.0188		0.0053	13.8		0.18	0.0269	0.043	0.508		
Boiler Process gas	Process	Process	8.01	0.284	0.0092		0.0026	6.77		~1	0.0132	0.0217	0.25		
Boller	-		80	3.46				26.8	0.546		74.5	5.64	5.46	597	
Boller Process gas 2.75 21		Fuel oil								1.59					
IC engine		Process o	90	2.75				21.3	0.435		59.3	4.49	4.35	476	
C engine Process gas 0.486 1.78 13 Flare Process gas 0.00998 0.0217 0.0061 0.2 Flare Process gas 0.00998 0.0217 0.0061 0.2 Coke handling Total emissions by HAP 162 0.518 347 62.6 8 E - Crude unit E - Catalytic Reforming I - Vacuum distillation F - Catalytic Hydrocracking I - I - Vacuum distillation F - Catalytic Hydrocracking I - I - I - I - I - I - I - I - I - I			8 5	0.486		1.78		13.1						0.648	0.648
Flare Process gas 0.00998 0.0217 0.0061 0.2 Flare Process gas 0.00998 0.0217 0.0061 0.2 Coke handling Total emissions by HAP 162 0.518 347 62.6 8 Flare Family F			80	0.486		1.78		13.1						0.648	0.648
Flare			8.0	0.00998	0.0217		0.0061	0.238		0.00631	0.00046	0.0495	0.00877) - •
Coke handling Total emissions by HAP 162 0.518 347 62.6 8 tefinery process code: - Crude unit - Vacuum distillation F - Catalytic Reforming J -			84	0.00998	0.0217		0.0061			0.00631	0.00046	0.0495	0.00877		
Total emissions by HAP 162 0.518 347 62.6 8 leftnery process code: - Crude unit - Vacuum distillation F - Catalytic Hydrocracking J -												51.7			
efinery process code: - Crude unit - Vacuum distillation F - Catalytic Hydrocracking J -	Total	emissions by	HAP	162	0.518	347	62.6	864	1,000	918	222	704	147	3,140	4.9
- Crude unit - Vacuum distillation F - Catalytic Hydrocracking J -	Refinery process code	1													
- Vacuum distillation F - Catalytic Hydrocracking J -	•		٠	alytic Refo	prming			I - Alkyl	lation/po	olymerizati	ton	4	M - Hydrogen	Ľ.	
	•	r	•	alytic Hyda	rocracking				111cs/1sc	omerization				ł	
* Thermal operations G * Catalytic hydrorefining	C . Thermal operations			alytic hyda	corefining							. •			
H . Catalytic hydrotreating				alytic hyda	totreating				3.) t			_	•		

	TABLE	2-8. REPORTED	ED HAP EMISSIONS	ВХ	PROCESS V	ENT AN	D COMBU	VENT AND COMBUSTION SOURCE	١	REFINERY	L X J		
								Emissions (lb/yr)	b/yr)				
	Process vent/		Fuel usage/yr				Man-	;		1			
Refinery	combustion	fue1	or	,		Formal-	ganese	Mercury	- don	NICKOL	i		
process*	source type	type	heat input/yr**	dehyde Be	Benzene	dehyde	comb.	comp.	thalene	comb.	Phenol	euen roi.	Aylene
В	Boiler	Refinery gas				5.7		0.1	5.4		6.0		
TJ	Boller	Refinery gas		2.2		2.2	0.1	0.5	9.0	0.3	0.1		
5	Boiler	Refinery gas		3.2		3.2	0.1	0.7	6.0	0.3	0.1		
5	Boller	Refinery gas		1.6		1.6	0.1	0.4	4.0	0.1	0.1		
~	Process heater	Refinery gas		43.4		39.4		0.5	31.5		6.1		
~	Process heater	Refinery das		8.8		40		0.1			1.2		
~	Process heater	Refinery gas		35.7		32.4		4.0	25.9		'n		
6	Process heater	Refinery gas		13		11.8		0.1	4.6		1.8		
œ,	Process heater	Refinery das		16.1		14.6		0.3	11.7		2.3		
•				4.4		4			3.2		9.0		
· (4)				2.6		2.3			1.9		0.4		
<u>ы</u>				29.5		26.6		0.3	21.2		4.1		
				40.3		36.6		9.0	29.5		5.7		
i Gai				4.6		4.2		0.1	3.4		0.7		
۵				0.1									
۵				0.3		0.5			0.5				
I	Process heater			14.6		13.3		0.3	10.6		~ 1		
9		Refinery gas		٣		2.7			2.5		9.0		
ပ	Process heater	Refinery gas		23.7		21.6		0.3	17.2		3.4		
ပ	Process heater	Refinery gas		23.7		21.6		0.3	1.2		0.5		
ပ	Process heater	Refinery gas		1.2		1.1			6.0		0.5		
×	Process heater	Refinery gas		1.2		1.1			6.0		0.5		
æ		Refinery gas		15.9		14.5		0.2	11.5		2.5		
=	Process heater	Refinery gas		5.6		5.1			4.1		9.0		
×	Process heater	Refinery gas		5.8		5.5			4.2		0.8		
ít.	Process heater	Refinery das		3.1		2.8			2.5		9.0		,
(4.	Process heater	Refinery gas		2.9		7.6			2.1		7 .0		
Ĺŝa	Process heater	Refinery gas		2.4		2.2			1.8		0.3		
(a,	Process heater	Refinery gas		3.1		2.8			2.5		9.0		
(4 ,	Process heater	Refinery gas		3.1		2.8			2.3		9 .0		
(24 ,	Process heater	Refinery gas		3.2		5.9			2.4		0.5		
Ĺ,	Process heater	Refinery gas		20.4		18.5		0.5	14.8		5.9		
x	Process heater	Refinery gas		126		42.9		1.3	26.3		2.5		
5	Boiler	Fuel oil				66.4	16.8						
۵	CO boiler	Gas oil		537		295					491		
ပ	Boller	Fuel oil					889			171			
(da	Process heater	Refinery des		1		19.2		0.2	15.3		9		
												(continued)	

_
~
à
-
•
÷
7
•
2
7
٠
C
_
_
Œ
ď
ŧ
7A
ŧ
c
0
0
0
0
T.E 2-

							HAP Em	Emissions (lb/yr)	b/yr)				
	Process vent/		Fuel usage/yr				Man-						
Refinery	Refinery combustion	Fuel	or	Acetal-		Formal-	ganese	Mercury	Naph-	Nickel			
process*	process* source type	type	heat input/yr**	dehyde	Benzene dehyde	dehyde	comb.	comb.	thalene		Phenol	comp. Phenol Toluene Xylene	Xylene
UT	IC engine	Natural gas		0.3	1.2	8.7			0.00012			9.0	0.4
5	IC engine	Natural gas		0.3	1.2	9.7			0.00012			0.4	4.0
5	IC engine	Natural gas		0.3	1.2	9.7			0.00012			0.4	4.0
15	IC engine	Natural gas		1.5	5.4	39.5			0.00055			7	(4
5	IC engine	Natural gas		1.5	5.4	39.5			0.00055			7	7
5	IC engine	Natural gas		1.5	5.4	39.5			0.00055			7	7
É	IC engine	Natural gas		1.5	5.4	39.5			0.00055			71	7
5	IC engine	Natural das		1.5	2. 4.	39.5			0.00055			(4	CI
5	IC engine	Natural gas		1.5	5.4	39.5			0.00055			7	71
5	Turbine	Natural gas		9.0	2.1	15.6			0.014			8.0	8.0
0	SRU incinerator	Refinery make gas	e gas		0.3								
		Total emissions	ons by HAP	1.010	38.4	1.286	765	9 9	7,47	17.2	5.4.1	7	
		***************************************		20.4		20011		2	107	7/7	780	*	-

*Refinery process code:

A - Crude unit
B - Vacuum distillation
C - Thermal operations
D - Catalytic cracking
E = Catalytic reforming
F = Catalytic hydrocracking
G = Catalytic hydrocracking
G = Catalytic hydrocracking
G = Catalytic hydrocracking
G = Catalytic hydrorefining
C = Naphalt
M = Hydrogen
F = Catalytic hydrocracking
G = Catalytic hydrorefining
C = Villities

** Confidential for this refinery.

726 continued) 0.536 0.183 0.235 1.16 0.445 0.419 0.493 0.509 0.437 0.557 1.33 9.676 0.517 0.331 0.127 0.256 0.132 0.072 0.072 0.0863 0.249 0.028 0.408 0.037 0.194 0.0472 0.0325 0.599 0.599 0.993 5.6 0.0425 0.0884 0.0354 0.0266 0.372 0.0572 0.0437 0.0112 0.0204 0.0155 0.0377 0.112 0.0199 0.0108 0.0454 3.0217 REPORTED HAP EMISSIONS BY PROCESS VENT AND COMBUSTION SOURCE - REFINERY K thalene 13 7.95 1.68 4.85 0.302 0.389 0.547 0.735 0.84 3.78 Naph-1.68 1.91 0.813 0.423 7.26 2.19 1.12 0.853 0.634 0.721 COMP. 0.163 0.085 0.0234 0.0125 0.0166 0.0613 0.255 0.0286 0.0269 0.264 0.144 0.0552 0.0552 0.0539 0.155 0.0175 0.0235 0.0273 0.479 0.479 0.795 73.8 dercury 0.0128 0.121 0.00969 0.00673 0.0136 0.233 0.0295 0.0702 0.0221 0.0357 0.0284 0.0231 0.00701 0.734 0.382 1.19 0.648 0.733 0.733 0.174 2.11 0.169 0.238 0.372 0.318 3.47 0.386 0.132 0.301 0.834 0.32 0.366 3.17 0.314 0.401 0.954 0.486 ganese .0915 0.1840.0953 HAP Emissions (1b/yr) 0.199 Lead 130 6.38 96.1 8.97 13.3 13.8 3.44 6.94 119 62 0.0046 0.0054 0.011 0.0108 0.0056 0.0024 0.0035 0.0052 0.051 0.0013 0.0466 0.0059 0.014 0.0071 0.0044 0.0123 0.0047 0.0057 0.0053 0.0027 0.0311 mium 126 126 209 0.0848 0.0165 0.0199 0.0155 0.03 Arsenic 0.0377 0.0377 0.025 0.0164 0.0387 0.0387 46800.0 0.109 0.0117 0.0429 0.0123 0.0182 0.0188 0.00471 0.00949 0.163 0.0162 0.0206 0.0191 0.049 Heat input/Acetal-1.16 1.32 0.61 0.208 0.476 0.268 0.358 0.56 5.48 0.615 0.579 0.145 0.497 0.634 1.51 0.588 20.7 0.151 TABLE 2-9. Process gas Process gas Process gas Process gas Process heater source type Process rocess Refinery process*

ed
lnue
7
Con
U
_
_
·
-9.
2
2

								HAP Emi	HAP Emissions (lb/yr)	1b/yr)					
	Process vent/		Heat				Cad-			Man-					
Refinery	Refinery combustion	Fuel	Input/ Acet	Acetal-	cal- Arsenic		mium	Formal - Lead	Lead	ganese	Mercury	Naph-	Nickel		
process	source type	type	yr	dehyde	comb.	Benzene	comb.	dehyde	comp.	comp.	comp.	thalene	comp.	Phenol	Phenol Toluene
Th	Process heater	Process gas		3.75		202		11	0.192	3.85	0.769	2.31	0.962	0.192	703
ပ	IC engine	Process gas				0.0121									
ţ	Flare	Process gas		0.215	0.00701		0.002	5.13		17.2	0.01	0.312	0.016	0.189	
5	Flare	Process gas		0.215	0.00701		0.002	5.13		17.2	0.01	0.312	0.016	0.189	
5	Flare	Process gas		0.0807	0.00263		0.0007	1.92		6.45	0.00376	0.117	0.00601	0.071	
0	SRU			0.135				21.1							
0	SRU			960.0				15.1							
Ω	FCCU				2.81					3.38	0.844	21.7	4.64	505	
	Total ents	Total emissions by Hab	۵	180	2 80	683	15.0	0 31 1 270	1 12	70	7. 07.	191	7 31		
*Refinery	*Refinery process code:									5		2	*:01	6/0	3, 130
A - Crude unit	a unit		-	- Alkyle	lkylation/polymerization	nerization	-								
B - Vacuu	- Vacuum distillation		7	I - Aroma	romatics/isomerization	rization									
C . Therm	Thermal operations		_	(- Lubes											
D . Catal	Catalytic cracking		1	Asphalt	ונ										
E - Catal	Catalytic reforming		2.	i - Hydrogen	net										
F - Catal	Catalytic hydrocracking	Du	~	- Coke											
G - Catal	Catalytic hydrorefining	ōu	Ü	- Sulfur	14										
H - Catal	H = Catalytic hydrotreating	Du	J	UT - UL113	Utilities										

Acetal-dehyde 1,420 1,420 13.6 13.6 21.9 41.3 2.82	Arsenic comp. 4.23		- (//// 0													
Acetal-dehyde 1,420 1,420 21.9 21.9 2.82			T & T D O	Cad-	chro-				Man-		3	nt oke 1		Sele-		
1,420 75.8 13.6 21.9 41.3 2.82		Benzene	llum comp.	mium comp.	mium comp.	Cresol	Formal- dehyde	Comp.	ganese comp.	Mercury comp.	napn- thalene	comp.	Phenol	comp.	Toluene	Xylene
1,420 13.6 13.6 41.3 41.3	4.23															
75.6 13.6 21.9 2.82	. 0264	162	9.0	2.64	6.91		4,860	89	76.1	15.3	683	177	228		4,530	4
13.6 2.1.9 2.8.2 2.8.2	.0744	1,040			1.31		721	2.63	607	284	32.5	211	28.9		10,700	4
21.9	.0744	212					21,200				0.0036		0.003		18.1	18.1
2.82	.0744	31.6			0.97		465		1.72	3.58	10.6	10.3	5.4		3,150	9.0
s a :- 0		0.675		0.0213	0.118		198		42.5	0.11	43.5	0.454	::		641	
rocess ents 							7.68									
o/M noo.																
co boiler	2.81								3.38	0.844	21.7	4.64	505			
FCCU W/ 540 CO boller	18.2		18.2	162	9.6	1.02	995	1,100	1,310	21.2		1,050	878	280		
Sulfur 0.231 recovery units		0.3					36.1				·					
Coke												51.7				
Total 2,120	25.3	1,440	18.8	165	18.9	1.02	28,100	1,110	2,240	325	792	1,510	1,360	280	19,000	26.9
<pre>% of total emissions 3.62</pre>	0.04	2.46	0.03	0.28	0.03	0.002	48.00	1.90	3.82	0.55	1.35	2.57	2.31	0.48	32.40	0.05

ı	0	
ł	_	
i	=	
Į		
ı	•	
J	Ç	
ì	ā	
1	ŭ	
ł	ŭ.	
ł		
1		
1		

							2		ロログくしょく ことの	C OCLACIO					
	•					(ID/yr per 1000 BDI/sd refinery process charge capacity)	1000 001 1	ומת ופוזוו	The Part of the Pa		apartry,				(ID/Yr per t/d)
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			1	Thermal	ć	į	4 . 0		4		Aromatics			per	
sources	нар	Crude	Vacuum dist.	oper- ations	cracking	cat reforming	cat cat cat hydrocat nydro cracking reforming cracking refining	_	cat nyaro treating	AIKY- Poly	1somer- 1zation	Lubes	Asphalt	MMcra) Hydrogen	Coke Sulfur
Process heaters	1											ı	1		
Process gas		0.655	0.196	0.425	0.094	1.44	0.89	90.0	0.226	0.0396		1.83	0.0218	1.56	
	Benzene	900	9 6000 0	66700.0		0.00194	U.U132		0.000861	0.00129	1190	900		311 0	
	Cadmium comp.		0,00027	0.000855	0	0.0013	0.00433		0.000246	0,000368	1100.0	0.7.0		011.0	
	Chromium comp.	0.00314	0.00251	0.00308	0.00225	0.0153	0.0124		0.00175			0.0258	0.00032	0.0171	
	Formaldehyde	1.33	0.627	2.19	0.5	3.79	6.43	0.054	0.898	0.942	2.7		0.0705	1.29	
	Manganese comp.	0.0192	0.0216	0.0474	0.026	0.145	0.174		0.0228	0.025		0.241	0.00288	0.0341	
	Mercury comp.	0.00505	0.00234	0.00661	0.00125	0.0133	0.0129		0.00233	0.00184		0.0189	0.00022	0.0159	
	Naphthalene	0.388	0.18	0.282	0.101	1.17	1.02	0.044	0.192	0.0227		1.91	0.0228	0.338	
	Nickel comp.	0.00278	0.00247	0.00684	0.00308	0.0104	0.0347		0.00215	0.00294				0.00379	
	Phenol	0.142	0.0465	0.0772	0.0288	0.235	0.279	0.008	0.0479	0.0348		0.471	0.00564	0.0582	
	Toluene	7	1.41	2.88	2.25	12.4	11.6		0.972			25.3	0.301	5.48	
	Total HAP	3.54	1.71	3.1	2.03	10.9	12.1	0.166	7	1.07	2.73	20.4	0.425	S	
Natural gas	Acetaldehyde	0.5	0.128												
		-4	0.513				0.0954						0.441		
	Formaldehyde	2.4	1.15				0.00615						0.588		
	Toluene	0.5	0.256												
	Xylene	0.3	0.128												
	Total HAP	4.4	2.18				0.102						1.03		
Fire Lot	Trees of the state								3 4 3 0						
	Bergere Comp.														
	Berylim comp.								0.022						
	Codming comp.								0.0444						
	Formaldehyde								1.12						
	Lead comp.								0 0768						
	Manganese comp.								0.0727						
	Mercury comp.								0.00808						
	Nickel comp.								3.48						
	Toluene	0.5							,						
	TOTAL NAP	7.0							5.5						
Boilers															
Process gas	Acetaldehyde				0.0656	0.0706	0.0838			0.161					
	Benzene				0.008	0.00625	0.0406			0.106					
	Chromium comp.				0.00293	0.00313	0.00375			0.0075					
	Formaldehyde				0.411	0.797	1.37			3.46					
	Manganese comp.				0.00533	0.00563	0.00688			0.0131					
	Mercury comp.				0.0111	0.0119	0.0141			0.0269					
	Naphthalene				0.0325	0.035	0.0416			0.08					
	Nickel comp.				0.0316	0.0341	0.0403			0.0775					
	Phenol					0.0178	0.0213			0.0406					
	Toluene					10.5	12.4			23.8					
	Total HAP				10.3	×	•								

TABLE 2-11. HAP EMISSION FACTORS FOR PROCESS VENTS AND COMBUSTION SOURCES

Continued)	
\sim	
11.	
- 1	į
~	
α	
TABLE	
Z	
-	

						HA	HAP Emission Factors	Factors						-	
						(1b/yr per 1000 Bbl/sd refinery process charge capacity)	/sd refine	ry process	charge c	apacity)			i.	(lb/yr per t/d)	00 L/Q)
	•			Thermal						Aromatics			per		
Emission			Vacuum	ober-	Cat	Cat Cat hydro	Cat hydro Cat hydro Cat hydro	Cat hydro	Alky-	1somer-			MMcfd)		1
sources	HAP	Crude	dist.	ations	cracking	cracking reforming cracking refining	refining	treating	Poly	ization	Lubes	Asphalt	Hydrogen Coke	Coke	Sultur
Bollers (continued)	1														
Fuel oil M	Mandahese comp.			14.9											
	Nickel comp.			3.7											
	Total HAP			18.6											
•															
IC engines															
Process gas A	Acetaldehyde							0.0287							
	Benzene			0.000604				0.105							
	Formaldehyde							0.776							
	Toluene							0.0383							
· ×	Xvlene							0.0383							
	Total HAP			0.000604				0.987							
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2															
888 008	Acetaldehyde				0.185	0.138			0.189						
	Benzene				0.233	0.228			0.331						
	Chromium comp.				0.0084	0.00625			0.00875						
. 12	Formeldehyde				0.516	0.385			0.526						
- 3	Table of the contract of the c				0.0149	0.0113			0.015						
, 3	Manganese comp.				0.011	0.0231			0.0319						
. 7	tercury comp.				4100.0	0.0684			0.0938						
	Naphthalene				0.0010	* CO CO			9000						
**	Nickel comp.				1680.0	0.000			0.0300						
	Phenol				0.0468	5,035			0.0481						
	Toluene				27.3	20.4			27.9						
•	Total HAP				28.6	21.4			29.5						
a moderno															
9	Acetaldehyde														0.0141
															0.0384
- F	rormaldenyde Total HAP														0.0525
FCCU W/o Co boiler	ы														
	A 400 0 0000				00500										
- 2	Management Comp.				0.0718										
•															
4	Mercury comp.				810.0	•									
~	Naphthalene				0.461										
4	Nickel comp.				0.0987										
•	Phenol				10.7										
	Total HAP				11.5										
														(continued)	nea)

						TABLE 2-11		(Continued)							
						(lb/yr per	HAP E 1000 Bb1/sc	HAP Emission Factors (1b/yr per 1000 Bbl/sd refinery process charge	ess charge	capacity)] =	(1) AVA (1)	(1b/vr per (1/d)	(8)
	,			Thermal								: ' 		171 501	2
Emission			Vacuum	oper-	Cat	Cat	Cat hydro Cat	Cat hydro Cat hydro Cat hydro	ro Alky-	1 somer-	•	1	MAC (d)		
sources	нар	Crude	dist.	ations	cracking	reforming	cracking reforming cracking refining	fining treating		ization	Lubes Asphalt		5	Coke Su	Sulfur
FCCU W/ CO boller	10							1			!				
Process gas	Process gas Acetaldehyde				0.061										
	Cadmium comp.				1.49										
	Formaldehyde				0.104										
	Lead comp.				23.9										
	Manganese comp.				18.5										
	Mercury comp.				0.492										
	Nickel comp.				15.2										
	Phenol				2.05										
	Total HAP				61.7										
7 7 1															
Fresh reed	Benzene				0.00719										
_	Formaldehyde				0.141										
	Total HAP				0.148										
, CO des	Arsenic comp.				0.185										
1	Beryllum comp.				0.185										
	Cadmium comp.				1 39										
	Chromium comp.				0.03										
	Cresol				0.0143										
	Lead comp.				1.28										
	Manganese comp.				7.76										
	Nickel comp.				5.34										
	Phenol				0.0138										
	Selentum comp.				3.71										
•	Total HAP				19.9										
Gas ofl	Acetaldehyde				8.67										
	Formaldehyde				90.6										
	Phenol				7.92										
	Total HAP				25.6										
Sulfur vaccoustry and the															
Tipional Intino	Acetaldehyde													•	
	Benzene													ō .	0.00115
	Formal dehyde													o	0.0007
	Total HAP													⊃ `	0.183
100 to 10															
Coxe nanating															
	Nickel comp.												0.020	20	

			The Carlo	Thermal		45	CAL bydro	Cat hydro	Cat bdro	Alkv-	Aromatics isomer-				
sources	нар	Crude	dist.	tions	cking	reforming	cracking	refining	treating	polγ	ization	Lubes	Asphalt Hydrogen Utilitie	ydrogen U	11111198
Process															
Process	s Acetaldehyde	12.6	8.1	12.1	165	9.53	5.51	26.3	15.4			9.01	12.4	23.6	1.82
600		2.48		1.39	20.4	1.52	1.02		2.91		2.65	1.1		0.97	2.09
	Chromium comp.	0.0302	0	0.0155	2.43	0.063	0.0454	;	0.066			0.13	0.182	0.181	0.0268
	Formaldehyde	27.2		57.6	909	36.8	30.6	23.7	90.0		n.	0 0	1	6.61	. 000
	Manganese comp.	0.27	0.316	0.0584	28.1	269.0	0.469		0.677			60.0	0.128	0.246	0.0188
	Merchip comp.	0000.0		4 87	17.2	8.27	98.5	19.3	11.6			9.44	12.9	4.92	1.9
	phonol	10.0		\$0. F	4.2	48.	1.3	3.53	2.49			2,32	7.0	0.43	0.469
	Frenci	9	1.44	7 7 7	7 4 30	¥0. ¥	44.01	;	7.99			124	171	35.5	25.1
	Total HAP	82.4	,,	91.7	3,470	122	69.7	72.8	159		1.69	208	241	85.8	112
•															
Natural	Acetaldehyde	36,400										-	000		
840	Benzene	182,000					70.4					. •	000,000		
	Formaldehyde	436,000	474,000				0.391						000,004		
	Toluene	006,06	105,000												
	Xylene	000,000	000,20				46.46					•	700,000		
	IOCAL BAR	000'000													
Fuel oil	Arsenic comp.								20.1						
	Benzene								121						
	Beryllum comp.								4.47						
	Cadmium comp.								16.4						
	Formaldehyde								413						
	Lead comp.								26.3						
	Manganese comp.								80.0						
	Mercury comp.								060						
	MICKEL COMP.	9							06711						
	auanto.	5.01							1 930						
	TOTAL HAP	7.5							07511						
Boilers															
Process	Acetaldehyde				5,850	4,220	4,220			4,220					2.7
000	Benzene				713	373	2,050			2,780					0.931
	Chromium comp.				262	187	189			196					0.058
	Formaldehyde				36,600	47,600	69,300			90,700					18.7
	Manganese comb.				9.19	336	346			344					0.195
	Mercury comp.				887	109	109			704					0.486
	Naphthalene				2,900	2,090	2,090			2,090					1.21
	Nickel comp.				2,820	2,030	2,030			2,030					1.08
	Phenol				1,470	1,060	1,070			1,060					75.0
	Toluene Total HAP				865,000 917,000	624,000	624,000			624,000 728,000					251
Natural	Acetaldehyde														37,000
CAB	Benzene														185,000
	Formaldehyde														435,000
	Toluene														111,000
	Xylene														37,000
															000

150000000000000000000000000000000000000	
(Ī
:	
\$	
7	
3	
(0
ζ	2
5	١
2.13	
3	4
TO AT	9
Ê	

Emission			Vacuum	opera-	Cat	Cat	Cat hydro	Cat hydro	Cat hdro	7 - \1	Aromatics	
sources	нар	Crude	dist.	tions	cracking	cracking reforming			treating	poly	ization	Lubes Asphalt Mydroden Hillities
Fue1	Benzene											Salliting indicate agence
011	Formaldehyde											36.2
	Mondana comp			000 000								1,200
	Nickel comp.			000.669								1,390
	Toluene											
	Total HAP			3,520,000								18.1
IC Engines												
Natural	Acetaldehyde											
04.8												27.4
•	Formaldahyda											550
	Naphthalana											59,100
	Toluene											0.0101
	Xvlene											36.5
	Total HAP											36.5
Turbine												
Process	Acetaldehyde				000		•			•		
800					5,320		070			4,220		
,	Chromium comp.				192		0,00			014.7		2.31
	Formal dehyde				11,800		11 800			11000		
	Manganese comp.				341		344			008'11		88.5
	Mercury comp.				709		707			336		
	Naphthalene				2,090		2.090			2 100		
	Nickel comp.				2,030		2,030			2.030		
	Phenol				1,070		1,070			1,080		
	Toluene				624,000		624,000		4	624,000		
	Total HAP				652,000		653,000		•	654,000		8.06
Natural	Acetaldehyde											4
800	Benzene											0.623
·	Formal dehyde											81.2
	Napthalene											0.0145
	Propylene											33.7
	and lax											0.831
	Total HAP											0.831
												20.2
Flares												
Process	Process Acetaldehyde											145
,	Chromium comp.											0.41
	Formal dehyde											0.421
	Manganese comp.											663
	Mercury comp.											5.75
	Naphthalene											0.303
	Phenol											153
	Toluene											37.6
	Total HAP											2,260

_	
D	
9	
2	
Continued	
=	
0	
O	
)	
12.	
$\overline{}$	
2	
C	
-	
Ξ	
2	
TABLE	

				Thermal							Aromatics			
Emission			Vacuum	opera-	Cat	Cat	Cat hydro	Cat hydro Cat hydro Cat hdro	Cat hdro	Alky-	1somer-			
sonrces	нар	Crude	dist.	tions	cracking	cracking reforming	cracking	refining	treating	poly	ization	Lubes As	Lubes Asphalt Hydrogen Utilities	ities
Natural	Natural Acetaldehyde													110
200	Benzene													4,200
ı	Formaldehyde													9.06
	Toluene													7,620
	Total HAP													12,000
Fccu w/														
CO Boller														
Process	Process Cresol													0.0101
8 40	Phenol					•							0	0.00968
,	Total HAP													0.0197
Fuel	Cresol												0	0.00713
011	Phenol												0	0.00671
!	Total HAP													0.0138
Others														99.3
(WASLE	Beryllium comp.													99.3
11qu1d)				•										99.3
	Chromitum comp.													2.48
	Cresol													0.398
	Lead comp.													273
	Mercury comp.													9.93
	Nickel comp.													905
	Phenol													0.0567
	Selenium comp.													323
	Total HAP													1,810

3.0 EQUIPMENT LEAKS

3.1 BACKGROUND INFORMATION

There are many potential sources of hazardous air pollutant (HAP) emissions from leaking equipment in a petroleum refinery. The major sources are valves, pumps, compressors, pressure relief valves, and flanges. 1

3.1.1 Valves

Valves are one of the most common pieces of equipment in refineries. Several types of valves are used, all of which are activated by a valve stem that opens and closes the throughput pathway. The valve stem requires a seal to isolate the stream flowing through the valve from the atmosphere. The possibility of a leak through this seal makes it a potential source of HAP emissions. 1

Valves in a refinery are differentiated by the type of stream flowing through them: gas, light liquid, or heavy liquid. Light liquid streams are those with a vapor pressure greater than the vapor pressure of kerosene (0.3 kPa at 20°C). Heavy liquid streams are those with a vapor pressure less than the vapor pressure of kerosene.

3.1.2 Pumps and Compressors

Pumps and compressors are used in petroleum refineries for the movement of liquids and gases, respectively. Pumps are divided into light liquid and heavy liquid stream pumps, while compressors are used for gases only. Pumps and compressors can leak at the contact between the moving shaft and the stationary casing. Seals are required to isolate the liquid or gas flowing through the equipment from the atmosphere. The possibility of a leak through the seal makes pumps and compressors a potential source of HAP emissions. 1

3.1.3 Pressure Relief Valves

Engineering codes require that pressure relief devices be used in applications where the process pressure may exceed the maximum allowable working pressure in the vessel. The most common type of pressure relief device is the pressure relief valve (PRV). Typically, PRV's are designed to open when the process pressure exceeds a set pressure, allowing the release of vapors or liquid until the system pressure is reduced to normal operating levels. When the system pressure returns to normal, the PRV closes down and a seal is formed. The possibility of a leak through the seal or a loose fitting when the PRV is closed makes pressure relief valves a source of VOC emissions. 1

3.1.4 Flanges

Flanges are bolted, gasket-sealed junctions that are used wherever pipe or other equipment, such as reaction vessels, may require isolation or removal. Flanges may become VOC fugitive emission sources when leakage occurs because of improperly chosen gaskets or a poorly assembled flange. The primary cause of flange leakage is due to thermal stress, which results in the deformation of the seal between the flange faces and allows a venue for emissions to occur.¹

3.2 METHOD FOR DEVELOPING HAZARDOUS AIR POLLUTANT EMISSION FACTORS FOR LEAKING EQUIPMENT

Equipment leak emission factors were developed for each equipment type by compiling information from the California refineries. Correlations were generated between speciated HAP emissions and equipment component counts.

3.2.1 California Refinery Equipment Leak Database

Ideally, emission factors for leaking petroleum equipment would be based on the composition of streams flowing through each piece of equipment. However, this information was not available from the California Refinery Database.

An alternative emission factor estimation method was developed based on the average emissions of HAP's reported by California refineries complying with the Air Toxics "Hot Spots" Information and Assessment Act of 1987 (AB 2588). For this

approach, the minimum information necessary for calculating emission factors for leaking equipment was:

- the HAP emissions by service type by process unit; and
- the component count by service type by process unit.

Only two refineries met these criteria and, therefore, the equipment leak database is comprised of these two data sets. Table 3-1 presents the equipment counts by service type by process unit for both refineries. Tables 3-2 and 3-3 present the HAP emissions by source type by process unit reported by the refineries included in the database (Refineries C and I, respectively). Table 3-4 presents the HAP emissions reported by the remaining California refineries submitting data.

3.2.2 Development of Hazardous Air Pollutant Emission Factors

Hazardous air pollutant emission factors were developed to characterize the equipment leak database. The HAP emission factors were generated by dividing the specific HAP emissions reported by each refinery for a specific process by the equipment counts by service type reported for that particular process. The average HAP emissions factors were then calculated from the two data sets. Table 3-5 presents the average HAP emission factors (in lbs/yr/1,000 equipment counts) for each process unit.

3.2.3 Database Limitations and Variability

The equipment leak database has some significant gaps.

Neither Refinery C or I reported equipment count or HAP emission information on aromatics/isomerization or coking processes; therefore, HAP emission factors could not be calculated for these processes. Information on catalytic hydrocracking, catalytic hydrorefining, lubes, and asphalt processes was only reported by Refinery C. Hazardous air pollutant emission factors for these processes were generated from this refinery only.

Refinery C did not report pumps for sulfur units or compressors for catalytic hydrocracking, alkylation, lubes, asphalt, or sulfur units. Refinery I did not report compressor component counts for crude, thermal, catalytic reforming, hydrogen, or sulfur units; PRV's for catalytic reforming and

sulfur units; or light liquid pumps for vacuum distillation, hydrogen, and sulfur units.

Seven HAP chemicals (benzene, toluene, xylene, cresol, 1,3-butadiene, ethyl-benzene, naphthalene) were reported by Refinery C. Refinery I only reported benzene, toluene, xylene, and 1,3-butadiene. The California refineries not included in the database reported 23 different HAP's among them. Refinery C did not report any HAP emissions from gas valves or compressors, and only reported naphthalene as being emitted from heavy liquid valves and pumps. Refinery C only reported 1,3-butadiene emissions from its hydrogen unit. Refinery I only reported 1,3-butadiene emissions for gas valves and compressors. Because of lack of data, large gaps occur when calculating the HAP emission factors.

3.3 REFERENCES

 VOC Fugitive Emissions in Petroleum Refining Industry - Background Information for Proposed Standards. Office of Air Quality Planning and Standards. U.S. Environmental Protection Agency. EPA-450/3-81-015a. November 1982.

TABLE 3-1. EQUIPMENT COUNTS BY PROCESS

Сопрапу	Company Equipment Service	Service	Crude	Vacuum Crude dist.	Thermal Cat Cat hydro operations cracking reforming cracking	Cat cracking	Cat reforming	Cat hydro cracking	Cat hydro Cat hydro Cat hydro cracking refining treating	Cat hydro treating	Cat hydro treating Alkylation Lubes Asphalt	Lubes	Asphal t	Hydrogen	Sul fur
J	Valves	Gas Lt.liquid Hvy.liquid	134 750 952	136 83 635	406 772 2,886	909 422 422	286 357 71	205 273 205	300 180 120	609 816 84	860 1,178 113	164 304 1,170	к к <u>8</u>	1,187	324 324 72
	Pumps	Lt.liquid Hvy.liquid	22	5	45 54	28 38	20 5	30	5 %	21 54	46	33 118	11 39	28 11	
	Compressor	Ĺ	****	-	M	4	4		-	4				4	
	Flanges		5,380	5,380	16,257	9,062	2,859	2,735	2,400	6,038	8,603 6,552	6,552	3,017	7,915	2,882
	PRV's		8	-	-	8	м	м	8	9	м	5	'n	4	-
guess.	Valves	Gas Lt.liquid Hvy.liquid	218 636 11,571	540 47 1,277	592 329 955	1,390 921 1,323	748 206 10			1,005 1,523 778	944 1,606 536			223 34 49	736 34 263
	Pumps	Lt.liquid Hvy.liquid	34	78	16 27	27	ν·-			13 21	45			ī	Ξ
	Compressor	.		-		S				4	-				
	Flanges		2,425	1,864	1,876	3,634	796			3,306	3,066			306	1,033
	PRV's		٠	~	m	16			`	9	07			~	
															1

Note: A blank entry indicates no data were reported

HAZARDOUS AIR POLLUTANT EMISSIONS BY PROCESS FOR REFINERY C* (lb/yr) TABLE 3-2.

Equipment	Pollutants	Crude	Vacuum dist.	Thermal operations	Cat cracking	Cat reforming	1	Cat hydro Cat hydro cracking refining	Cat hydro treating	Alkylation	rubes	Asphalt	Hydrogen	Total
Gas valves	<i>(</i> A)													
il valves	Benzene Toluene Xylene 1,3-Butadiene Cresol	1.07		20.7 10.9 10.9 10.9	21.6 57.5 57.5 28.7 28.7	66.4 498 498 3.32	11.3 8.04 8.04 1.61 0.161	0.14 0.14 0.14	78.9 5.65 5.65	0.83 0.83 0.83 44.0	0.098 0.098 0.098	0.041	0.763	340 582 582 89.3 39.8
HL valves	Naphthalene	174	174	631	13.3	1.57	4.5	26.3	14.7		256	132		1,427
sdund 11	Benzene Toluene Xylene 1,3-Butadiene Ethyl-benzene Cresol	38.3 3.00 3.00		50.7 26.6 26.6 26.6 26.6 26.6	124 331 16.6 82.9	237 1,774 1,774 11.8 237	108 77.0 77.0 1.54 77.0	0.65 0.65 0.65 0.65	24.9 24.9 24.9 0.355 26.6	333.4.4	1.54	0.65 0.65 0.65	1.65	2,241 2,241 2,241 114 469 58.6
HL pumps	Naphthalene	101	101	594	20.7	2.72	16.3	6.84	267		645	212		1,706
Compressor	L													
f lange	Benzene Toluene Xylene 1,3-Butadiene Ethyl-benzene Cresol	42.5 3.27 3.27 16.4	477	28.8 15.2 15.2 15.2 15.2 15.2 15.2	66.9 178 178 8.93 44.6 8.93 59.5	140 1052 1052 7.0 140	37.6 26.8 26.8 0.537 26.8 5.37 20.2	0.353 0.353 0.353 0.353	145 33.5 33.5 0.50 36.1	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	120 11.3 11.3 11.3	0.148 0.148 0.148 0.148	1.55	582 1,322 1,322 95.1 292 29.5 6,133
PRV	Benzene Toluene Xylene 1,3-Butadiene Ethyl-benzene Cresol	5.18 0.400 0.400 2.00		1.60 0.84 0.84 0.84 0.84 0.84	6.75 18.0 18.0 0.898 4.49 0.898	39.8 300 300 2.0 39.8	14.0 10.0 10.0 0.2 10.0 2.00	0.09	33.3 7.33 7.33 0.090 7.33	0.084 0.084 0.084 4.57 0.084	0.569 0.569 0.569 0.569	0.285 0.285 0.285 0.285	0.284	102 338 338 8.9 65.4
	TOTAL	1,328	1,054	4,115	1,724	8,183	591	198	937	179	1,943	941	4.25	21,184

* Refinery C did not report MAP emissions from sulfur, aromatics/isomerization, or coke units.

Note: A blank entry indicates no data were reported

HAZARDOUS AIR POLLUTANT EMISSIONS BY PROCESS FOR REFINERY I* (1b/yr) TABLE 3-3.

Equipment	Equipment Pollutant	Crude	Vacuum dist.	Thermal Cat Cat operations cracking reforming	Cat cracking	Cat reforming	Cat hydro treating	Alkylation Hydrogen	Hydrogen	Sul fur	Total
Gas valves	Gas valves 1,3-Butadiene	0.0206	0.0206	0.0206	0.0255	0.0678	0.0192	0.342	0.0666	0.0354	0.619
Li valves	Benzene Toluene Xylene 1,3-Butadiene	829 647 702 12.9	7.79 64.0 77.9	248 149 181 15.2	546 1,997 1,859 93.8	147 990 824	570 3,313 6,881	274 727 37.1	0.222	0.202 93.6	2,622 7,981 10,562 319
HL valves	Benzene Toluene Xylene 1,3-Butadiene	4.50 11.9 16.7	0.687	1.10 3.90 8.60	1.76 5.80 10.21	0.017 1.90 2.26	4.58 4.75 15.5	0.236 1.65 4.00 0.017	0.0066 4.05 4.40	0.0044 2.02 2.20	12.2 36.7 65.5 0.017
sdund 11	Benzene Toluene Xylene 1,3-Butadiene	224 158 172 3.50		7.30 62.1 80.5 6.50	198 589 236 0.46		59.2 566 1,064	0.0016 0.624 1.74 101			488 1,377 1,554 112
AL pumps	Benzene Toluene Xylene	6.70 18.2 26.2	0.0085 0.660 1.56	4.10 0.700 15.3	0.761 6.81 14.1	0.196 0.450 0.523	0.225 15.7 46.3	0.121 0.683 1.61			12.1 43.2 106
ompressor	Compressor 1,3-Butadiene						0.0257	0.0283			0.0540
Flanges	Benzene Toluene Xylene 1,3-Butadiene	73.2 66.5 76.6 1.10	0.650 6.06 8.26 0.009	21.6 16.6 24.5 1.30	46.1 168 160 7.59	12.2 82.3 68.8 0.018	53.6 285 596 0.010	23.1 62.4 7.54 16.6	0.0096 4.51 4.90 0.024	0.0216 9.92 10.8 0.012	230 701 957 26.7
PRV	Benzene Toluene Xylene 1,3-Butadiene	212 130 142 3.80		2.00	119 373 202 9.59		171 49.1 58.2	0.0011 0.454 1.28 263	0.0257		502 553 403 278
	TOTAL	3,538	169	849	7,644	2,130	13,752	1,722	18	119	28,943

^{*} Refinery I did not report MAP emissions from catalytic hydrocracking, catalytic hydrorefining, lubes, asphalt, coke, or aromatics/isomerization units.

Note: A blank entry indicates no data were reported

TABLE 3-4. HAZARDOUS AIR POLLUTANT EMISSIONS FROM REFINERIES (lb/yr)

		***************************************		 		Refineries	69	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Pollutants	Ą	g	ບ	D	Ħ	Ē	9	ж	H	ט	×
Acetaldehyde Benzene 1,3-Butadiene Carbon tetrachloride Chlorobenzene Chlorobenzene Chloroform Cresol 1,4-Dioxane Ethyl benzene Ethylene dibromide Ethylene dichloride Ethylene glycol Hydrogen fluoride Methyl chloroform Nåphthalene Phenol	7,140,670	4,120 83.8 44.6 6.25 0.115 418	1,705 307 132 826 9,266 4,483	38.1 33.1 33.1 33.1 33.1 513 513 133.5	5,173 161 135 334 21,119	5,132 30 60 1,800 2,953 17,794 16,200	1.78 2,151 417 6,613	3,067 269 0.0281 1.63 304 0.0316 2,660 74.4	3,866	4,820 1,331 358 358 10,892	3,163 55.9 2,030 30.6 6,841
1,1,1-ifichioroethane Xylenes	49,213	12,226	4,483	236	9,248	21,616	6,288	7,169	13,648	12,022	13,916

Note: A blank entry indicates no data were reported

HAZARDOUS AIR POLLUTANT EMISSION FACTORS (1b/yr/1,000 Equipment Counts) TABLE 3-5.

								2	וובפרוט	Alkylation		Aspriare	Aspiratt nydrogen	Sulfur
Gas valves	1,3-Butadiene	0.0945	0.0381	0.0348	0.0183	9060.0			0.0191	0.362			0.299	0.0481
LL valves	Benzene	745	16.6	390	320	450	414	0.778	235	85.7	0.322	0.546		5.95
	Toluene	509	1,362	233	1,147	3,100	29.5	0.778	1,091	227	0.322	0.546		2,753
	1,3-Butadiene	20.2		30.2	82.5	9.30	5.90)		80.0	,		3.75	
ML valves	Benzene	2.86	0.0038	1.15	1.33	1.65		0.00	5.89	0770	Ç	6	0.135	0.0167
	Toluene	7.57	0.538	4.08 9.01	4.38	190	<u> </u>	413	6.11	3.07	9	<u> </u>	82.6 89.8	7.70
	1,3-Butadiene									0.0322				
rr brumbs	Benzene Cresol	660'9		791	5,881	11,850	4,154	59.1	5,110	18.1	46.7	59.1		
	Ethyl-benzene	592		591	2,961	11,850	2,962	59.1	1,267	36.1	46.7	59.1		
	Toluene	3,822		2,236	16,818	88,700	2,962	59.1	22,362	24.9	46.7	59.1		
	1,3-Butadiene	167		667	305	280	59.2		16.9	1,719	÷.	. ¥c	58.9	
HL pumps	Benzene	197	0.305	152	22.4	196	ì	5,433	10.7	121	:	1		
	Toluene	535	23.6	25.9	500 500 500	720	446	664,0	4,844	683	5,441	5,436		
	Xylene	1	55.9	295	416	523			2,207	1,608				
Compressors	Compressors 1,3-Butadiene								6.43	28.3				
Flanges	Benzene	19.0	0.149	6.64	11.9	30.8	13.7	0.147	20.1	3.76	18.3	0.049	0.0314	0.021
	Cresot Ethyl-henzene	20 5		0.934 0.750	74.7	0 87	- ^ % %	771 0	90	7 07		ò		
	Naphthalene	145	145	174	9.85	2.45	62.6	49.2	10.9	0.129	135	16,0		
•	Toluene	14.0	3.25	4.89	37.8	227	62.6	0.147	45.9	10.2	1.72	0.049	14.7	09.6
	Xylene	16.1	2.25	6.99	36.7	219	9.79	0.147	92.9	1.29	1.72	0.049	16.1	10.4
	alaina na .c'i	0.667	4400.0	0.013	9.	57.1	0.196		0.0420	6.28			0.137	0.0113
PRV S	Benzene Cresol	13,073		1,600	907,5	13,262	799'5	45	17,025	14.0	38.0	23		
	Ethyl-benzene	1,000		840	2.245	13,262	3 333	57	1 222	0 80	28	5.7		
	Toluene	7,322		840	16, 159	100,000	3,333	42	4,703	19.7	38.0	27.		
	Xylene	7,989		840	10,803	100,000	3,333	45	5,461	30.0	38.0	22		
	1,5-Butadiene	724		753	524	999	8 .7		15.7	670'7			27	

Note: A blank entry indicates no emissions or equipment counts were reported

4.0 STORAGE TANKS

4.1 BACKGROUND INFORMATION

4.1.1 Types of Storage Tanks

Most storage tanks at petroleum refineries are comprised of three basic tank designs: fixed roof, external floating roof, and internal floating roof. Some general information about the design of these tanks and their emissions is provided below. Additional information about storage tanks can be found in AP-42.1

4.1.1.1 <u>Fixed Roof Tanks</u>. This type of tank is generally considered the minimum acceptable equipment design for storage of petroleum liquids. It consists of a cylindrical steel shell with a permanently affixed roof and is commonly equipped with a pressure/vacuum valve.

Two types of emissions from fixed roof tanks are breathing losses and working losses. Breathing loss is the expulsion of vapor from a tank through vapor expansion and contraction due to changes in temperature and barometric pressure. This loss occurs without any liquid level change in the tank.

Working loss is the combined loss from filling and emptying the tank. Filling loss occurs during an increase of the liquid level in the tank, when the pressure inside the tank exceeds the relief pressure and vapors are expelled. Emptying loss occurs when air drawn into the tank during liquid removal becomes saturated with organic vapor and expands, thus exceeding the vapor space capacity.

Fixed roof emissions vary as a function of tank size, vapor pressure of the stored petroleum liquid, turnovers per year, and meteorological conditions at the tank location.

4.1.1.2 External Floating Roof Tanks. External floating roof tanks consist of a cylindrical steel shell with a roof floating on the surface of the stored petroleum liquid. There is

an annular rim seal attached to the perimeter of the tank, with roof fittings for operational functions. Current external floating roof designs are pan-type, pontoon-type, and double deck-type roofs.

Floating roofs may have a primary (lower) and a secondary (upper) seal. The primary seal may be either a metallic shoe seal, a liquid-mounted seal, or a vapor-mounted seal. Secondary seals may be rim-mounted or shoe-mounted.

Emissions from external floating roof tanks are the sum of standing storage losses and withdrawal losses. Standing storage losses include rim seal losses and deck fitting losses. Withdrawal loss occurs as the liquid that clings to the tank wall is exposed to the atmosphere and vaporizes when the floating roof is lowered by withdrawal of the stored liquid.

4.1.1.3 <u>Internal Floating Roof Tanks</u>. An internal floating roof tank has both a permanent fixed roof and a floating deck inside. There are two basic types of internal floating roof tanks: 1) tanks in which the fixed roof is supported by vertical columns within the tank, and 2) tanks with a self-supported fixed roof and no internal support columns.

Internal floating roof tanks are equipped with a continuous closure device, such as a foam-or liquid-filled seal, two seals (primary and secondary) mounted one above the other, or a mechanical shoe seal, between the wall and the internal roof.

Total emissions from internal floating roof tanks are the sum of standing losses and withdrawal losses. Standing storage losses include rim seal losses, deck fitting losses, and deck seam losses.

4.1.2 Types of Petroleum Liquid Stored in Tanks

Petroleum liquids stored at petroleum refineries may be divided into three categories: 1) crude oil, 2) high vapor pressure petroleum liquids, and 3) low vapor pressure petroleum liquids. Because most state regulations base their requirements on vapor pressure and tank size, there are common storage practices for specific petroleum liquids.

Crude oil has a wide range of vapor pressures and is usually stored in large external floating roof tanks. High vapor pressure petroleum liquids, such as naphtha, jet naphtha (JP-4), benzene, and gasoline, are commonly stored in large internal floating roof tanks. Low vapor pressure petroleum liquids, such as distillate fuel oil, heavy gas oil, and residual fuel oil, are generally stored in fixed roof tanks.²

4.2 METHOD FOR DEVELOPING HAZARDOUS AIR POLLUTANT EMISSION FACTORS FOR STORAGE TANKS

The methodology used for developing speciated hazardous air pollutant (HAP) emission factors for refinery storage tanks involved compiling information from the California refinery database and developing correlations between HAP emissions and specific refinery process unit charge capacity, as discussed below.

4.2.1 California Refinery Storage Tank Database

The minimum information required for a specific storage tank to be included in the California refinery database was:

- type of tank;
- type of petroleum liquid stored; and
- annual average emissions by HAP (lbs/yr) (total loss).

Additional information about storage capacity; throughput; seal design; breathing, standing, working, and withdrawal losses; and refinery process was compiled when available. The California refinery database is comprised of 487 storage tanks. The tank types in this database include fixed roof, external floating roof, and internal floating roof tanks.

Table 4-1 presents the petroleum liquids included in the California refinery database and the refinery process unit to which each liquid was assigned.

The annual average emissions by HAP were obtained from Forms "PRO-Process and Emittents Data" used by California refineries to comply with Air Toxics "Hot Spots" Information and Assessment Act of 1987 (AB 2588). These emissions were calculated using AP-42 equations for total VOC emissions, and then coupled with

composition data obtained for refinery streams. Fourteen HAP's were reported as being released from storage tanks. Only benzene, toluene, and xylene were reported by all refineries comprising the California database. Table 4-2 shows the various HAP's reported by each refinery included in the database.

Tables 4-3 through 4-10 present the HAP emissions from storage tanks reported by each of the 8 California refineries included in the database.

Table 4-11 presents a summary of the reported number of tanks by petroleum liquid type from California refineries in the database. External floating roof storage tanks was the tank type most represented in the database.

4.2.2 <u>Development of Hazardous Air Pollutant Emission Factors</u>

Tank emission factors by petroleum liquid and tank type were developed on the basis of the respective refinery process charge capacity.

The assignment of storage tanks to a specific refinery process was made according to the scheme listed in Table 4-1. With some petroleum liquids, it was possible to assign tanks to a specific process. For example, reformate can be assigned to the catalytic reforming unit and xylene can be assigned to the aromatics unit. However, with blended hydrocarbon products (gasolines, diesel fuels, jet fuels, and fuel oils) it was difficult to assign the tanks to a specific unit because more than one unit is involved. For example, gasoline is typically a blend of various petroleum liquid fractions: reformate, alkylate, straight-run gasoline, thermally cracked gasoline, catalytically cracked gasoline, coker gasoline, isomerate, and butane. Therefore, the crude unit was selected as a default when a specific refinery process unit could not be assigned.

Tank emission factors for each HAP were obtained by dividing the reported HAP emissions from each refinery (for a specific petroleum liquid and tank type) by the total refinery process charge capacity of those refineries reporting the specific HAP. Information on types and capacities of refinery processes included in the database were identified using the Oil and Gas

Journal's January 1990 Annual Refining Survey.3

Table 4-12 presents tank emission factors for 14 HAP's by petroleum liquid and tank type expressed as lb/yr per 1,000 bbl/sday refinery process capacity.

4.2.2.1 Analysis of Tank Emission Factors. Tank emission factors by HAP range from 4.43 x 10⁻⁸ to 26.3 lb/yr per 1,000 bbl/sday. The lowest emission factor is for phenol (fixed roof tanks storing others) and the highest emission factor is for toluene (fixed roof tanks storing toluene).

For tanks storing gasoline, toluene was the HAP with the highest emission factor.

4.3 REFERENCES

- 1. U.S. Environmental Protection Agency. Compilation of Air Pollutant Emission Factors. Volume 1: Stationary Point and Area Sources. Office of Air Quality Planning and Standards. Research Triangle Park, North Carolina. AP-42. Fourth Edition. September 1985.
- 2. U.S. Environmental Protection Agency. Estimating Air Toxics Emissions from Organic Liquid Storage Tanks. Office of Air Quality Planning and Standards. Research Triangle Park, North Carolina. EPA-450/4-88-004. October 1988.
- Thrash, L.A. Annual Refining Survey. Oil & Gas Journal. March 26, 1990.

TABLE 4-1. LIST OF PETROLEUM LIQUID TYPES AND REFINERY PROCESS ASSIGNMENT

Petroleum liquid type	Refinery process
Alkylate	Alkylation
Crude	Crude
Diesel/distillate fuel	Crude
Gasoline	Crude
Jet/kerosene	Crude
Kerosene	Crude
Naphtha	Crude
Others	Crude
Reformate	Catalytic reforming
Residual fuel oil	Crude
Slop oil	Crude
Toluene	Aromatics
Xylene	Aromatics

TABLE 4-2. HAZARDOUS AIR POLLUTANTS REPORTED BY EACH REFINERY INCLUDED IN DATABASE

НАР	Refinery
Benzene	A,B,D,E,F,G,H,I,J,K
Carbon tetrachloride	A
Chlorobenzene	D
Chloroform	D
Cresol	D,K
1,4 Dioxane	D
Ethylene dichloride	A,D,E,F,G,J
Ethylene dibromide	D,E,G,H,J
Glycol ethers	G
Naphthalene	B,D,E,G,H,J,K
Phenol	D,F,K
Styrene	D
Toluene	A,B,D,E,F,G,I,J,K
Xylene	A,B,D,E,F,G,I,J,K

Note: Refinery C did not report any HAP emissions from storage tanks.

TABLE 4-3. STORAGE TANK EMISSIONS - REFINERY A

	Petroleum			HAP Em	HAP Emissions (lb/yr)	C	
Tank	11quid	Throughput (Mbbl /vr) **	Benzene	Carbon tetrachloride	Ethylene dichloride	Toluene	Xylene
r A he	Lype	(T / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /				15.4	9 1
FIX	Crude		6.5			7 .01	•
FIX	Crude		8.3			20.8	9.93
FIX	Crude		19.2			48.4	23
FIX	Crude		19.1			48.2	23
FIX	Crude		19.2			48.5	23.1
FIX	Crude		13.6			34.2	16.4
FIX	Other			0.11			
FR	Gasoline		33.6			128	31.5
FR	Gasoline		2.36		0.1	1.8	0.3
FR	Gasoline		123				
FR	Gasoline		33			126	31
FR	Gasoline		9			64	155
FR	Gasoline		178			624	802
FR	Gasoline		371			349	108
FR	Gasoline		35.7		0.4	136	33.5
FR	Gasoline		33			126	31
FR	Gasoline		34		0.3	129	32
FR	Gasoline		33.9			129	31.9
FR	Gasoline		35.8			136	33.6
FR	Gasoline		63			627	1,510
FR	Gasoline		10		0.3	38	6
IFR	Gasoline		14.8		0.2	56.5	13.9
IFR	Gasoline		11.6		0.1	44.3	10.9
IFR	Gasoline		11.6			44	10.9
IFR	Gasoline		14.8		*****	57	13.9
IFR	Gasoline		11.5			77	10.8
		,				000	010
	Total emis	Total emissions by HAP	1,140	0.11	1.4	3,080	2,910
		4 1 4	Formul flooting	ينامو	TOD - Informal	floating roof	00

IFR - Internal floating roof FR = External floating roof *FIX = Fixed roof

** Confidential for this refinery.

	Petroleum						HAP Emissions (1b/yr)	(1b/yr)						
nk	Tank liquid	Throughput		Chloro-	Chloro- Chloro-			Ethylene	Ethylene					
/pe*	type* type	(Mbbl/yr)	Benzene	benzene	form	Cresol	benzene form Cresol 1,4 Dioxane dichloride dibromid Naphthalene Phenol Styrene Toluene Xylene	dichloride	dibromid	Naphthalene	Phenol	Styrene	Toluene	Xylene
<u>بر</u>	FFR Crude	11	0.7	0.1	1.3			0.5	0.1				6.0	0.3
IFR	Naphtha	66	1.9	0.3	3.6		13.7	0.3	1.5			0.1	1.8	6.0
FIX	Kerosene	8.07	2.5	0.3	4.7		17.2	0.3	7			0.1	1.6	1.5
FIX	Distillate													
	fuel	13.5	18.8	4.9	31.7	3.6	159	4.5	10	3.1	7.2	3.5	22	37.1
	Total emis	Fotal emissions by HAP 23.6	23.6	5.4	41.3	3.6	190	5.6	13.6	3.1	7.2	3.7	26.1	39.8

* FIX = Fixed roof

FR - External floating roof IFR - Internal floating roof

	Petroleum				HAP Emissions (1b/yr)	ons (lb/yr)		
Tank type*	liquid	Throughput (Mbb1/yr)	Benzene	Ethylene dichloride	Ethylene dibromide	Napthalene	Toluene	Xylene
FR	Alkylate	1,580	4.2				12.1	0.0547
FR	Crude	8,300	8.88				13.1	m
FR	Crude	2,560	2.47				0.812	0.528
FR	Crude	36,200	11.9				11	2.68
FR	Crude	9,010	0.269				0.53	0.514
FR	Crude	22,700	6.49				9	1.46
FR	Crude	39,300	8.28				7.65	1.86
H.	Crude	10,600	2.28				0.748	0.487
FR	Crude	5,190	5.97				8.84	2.03
FR	Gasoline	11,000	27	0.0901	0.0149		80.1	198
FR	Gasoline	107	6.04				5.19	44.3
FR	Gasoline	5,870	27.4	0.0914	0.0151		81.3	201
FR	Gasoline	060'9	21.3				3.5	0.732
FR	Gasoline		11.1				32.8	81.2
FR	Gasoline	903	8.51				7.32	62.5
FR	Gasoline	3,000	2.16			0.113	5.05	9.7
FR	Gasoline	12,200	22				25.2	23
FR	Gasoline	1,510	4.46				13.2	32.7
FR	Gasoline	2,750	11.9				13.7	12.5
FR	Gasoline	8,000	14.1				24.4	9.53
FR	Gasoline	6,910	13.7				23.6	9.21
FR	Gasoline	3,140	20.3				35.2	13.7
FR	Gasoline	112	41.5				47.7	43.5
FR	Gasoline	6,940	22.8				39.3	15.3
FR	Gasoline	6,310	15.4				17.6	16.1
Si.	Gasoline	138	15.5				17.7	16.2
FR	Jet kerosene		3.86	0.0207	0.0035		11.2	1.11
FR	Jet kerosene	1,010	5.59	0.0299	0.0051		16.2	1.61
FR	Jet naphtha	1,430	9.19				30	13.1
FR	Jet naphtha	4,800	18				oo i	9.6
FR	Jet naphtha	2,490	84.9				37.7	16.4
FR	Other	2,590	9.03				5.02	2.13
FR	Other	1,810	6.53				0.145	0.119
FR	Other	2,630	10.1		•		0.224	0.183
FR	Other	2,860	0.892			0.00011	2.08	1.93
FR	Other	1,840	78.6				0.219	0.18
FR	Other	66	m				0.0667	0.0547
FR	Reformate	176	8.5			0.000198	10.4	2.91
FR	Reformate	2,020	31			0.000726	38.1	10.6
FR	Reformate	4,310	9.87			0.000397	0.219	0.18
							(contined)	(pe

TABLE 4-5. (Continued)

Tank liquid Throughput Ben type type (Mbbl/yr) Ben FR Slop oil 1,210 2 FR Slop oil 190 1 FR Slop oil 785 2 FR Toluene 47.6 3 IFR Jet kerosene 121 3 IFR Jet kerosene 212 2 IFR Jet kerosene 212 2	Benzene 2.18 1.05 2.38	Ethylene dichloride	Ethylene dibromide	Napthalene Toluene	Toluene	
type (Mbb1/yr) Slop oil 1,210 Slop oil 190 Slop oil 785 Toluene 47.6 Gasoline 121 Jet kerosene 123 Jet kerosene 212 Jet ke	Benzene 2.18 1.05 2.38	dichloride	dibromide	Napthalene	Toluene	
Slop oil	2.18 1.05 2.38					Xylene
Slop oil 190 Slop oil 785 Toluene 47.6 Gasoline 121 Jet kerosene 123 Jet kerosene 212	1.05				2.02	0.11
Slop oil 785 Toluene 47.6 Gasoline 121 Jet kerosene 123	2.38				0.967	0.235
Toluene 47.6 Gasoline 121 Jet kerosene 123					2.2	0.535
Gasoline 121 Jet kerosene 123 Jet kerosene 212					387	
Jet kerosene 123 Jet kerosene 212	37.3				110	274
Jet kerosene 212	59.3	0.318	0.054		171	17.1
	21.8	0.116	0.0198		62.8	6.27
IFR Slop oil 71 4	4.62				4.27	0.219
Total emissions by HAP	733	0.666	0.112	0.114	1,430	1,150
*FTX = Fixed roof FR = External floating roof	ing roof	IFR - Interna	IFR - Internal floating roof	of		

TABLE 4-6. STORAGE TANK EMISSIONS - REFINERY F

	Xvlene	2.7	1.4		13			12	14		7									1.1	7					24	3.4	11	6.3	1.5	3.7	7	2.4	2.8	1.5	75	1.7	8	(continued)
HAP Emissions (lb/yr)	Toluene	5.4	2.7								17									2.4	15					09	7.8	22	14	3.6	8.5	4	5.7	6.4	3.6	185	4	18	٣
stons (lb/yr	Phenol																													***									
HAP Emis	Ethylene dichloride	201121														0.033																							
	Benzene	4.3	2.1	4.6	20	4.4	2.3	18	20	3.3	11	4	9.6	9.6	12	2.4	12.2	4.4	9.6	1.6	10	9	4.4	1.3	Ω.		5.1	6.5		13.4	30	13	20	22	13		15	12	
	Throughput	1.140	47.6	4,520	5,170	4,520	9,120	5,170	5,170	310	1,020	1,020	1,020	1,020	833	167	1,020	262	1,020	0.0238	1,020	1,020	1,290	333	833	66.7	1,980	1,950	2,000	1,140	1,140	193	1,950	1,400	1,140	452	1,140	1,050	
Petroleum	liquid	Cride of 1		Crude oil	Gasoline	Naphtha																																	
	Tank	cype.	FIX	FIX	FIX	FIX	FIX	FIX	FIX	FIX	FR	FR	FR	FR	FR	FR	FR	FR	FR	FR	FR	FR	FR	FR	FR	FR													

TABLE 4-6. (Continued)

	Petroleum			HAP Emiss	HAP Emissions (lb/yr)		
Tank	liquid	Throughput		Ethylene			
type.	type	(Mbbl/yr)	Benzene	dichloride	Phenol	Toluene	Xylene
FR	Naphtha	1,190	16.3				
FR	Naphtha	4,810	28			39	18
FR	Naphtha	1,140	18			5.3	2.3
FR	Naphtha	881	111			31	13
FR	Naphtha	1,400	12			3.3	1.4
FR	Naphtha	1,140	13.4			3.6	1.5
FR	Naphtha	42.9				3.3	1.3
FR	Other	219	-				
FR	Other	19			210		
FR	Other	219	9.0				0.4
FR	Other	11.9			28.1		
	Total emissions by HAP	tons by HAP	533	0.033	238	471	239
• FIX •	FIX - Fixed roof	FR = External floating roof	floating rc	of	H	R = Internal	IFR - Internal floating roof

TABLE 4-7. STORAGE TANK EMISSIONS - REFINERY G

					Н				
	Petroleum				HAP Em	HAP Emissions (lb/yr)	lb/yr)		
rank	liquid	Throughput (Mbb1/vr)	Benzene	Ethylene dichloride	Ethylene dibromide	GIYCOL	Naphthalene	Toluene	Хуlene
LY Der	cype	(- F / - cost)					y	-	-
FIX	Distillate fuel	2.27					•	• •	• •
FIX	Gasoline	0.274	4					S	1.6
FIX	Gasoline	0.457	S					9	1.8
FIX	Jet kerosene	471					23		
FIX	Jet kerosene	471					23		
FIX	Naphtha	85.2	8.5					9.9	2.6
FIX	Other	0.0833				15			
FIX	Other	15.3	29					23	6
22	Crude	4,890	9.0					0.4	9.0
	Crude	4,890	9.0					4.0	4.0
	Crude	4,890	9.0					4.0	0.4
. e.	Distillate fuel	200					0.2	8.0	6.0
. e	Distillate fuel	2,					0.3	2.1	6.0
. E	Gasoline		11.5					10.2	2.7
	Gasoline	268	11.5		0.000166			10.2	2.7
	Gasoline	421	6.4					5.7	1.6
. H	Gasoline	94	5.8					5.2	1.4
. H	Gasoline	268	11.5	0.00105				10.2	2.7
. 4. 4.	Gasoline	268	11.5	0.00105	0.000166			10.2	2.7
. 4	Gasoline	483	11.5					10.2	2.7
	Gasoline	483	11.5					10.2	2.7
. a.	Gasoline	52.2	5.7	0.000521	0.000083			5.1	1.4
. E	Gasoline	52.2	5.7	0.000521				5.1	1.4
FR	Gasoline	483	11.5					10.2	2.7
FR	Gasoline	241		11.5				10.2	2.7
FR	Gasoline	81	11.3					10.1	2.7
FR	Jet kerosene	312					10		
FR	Jet kerosene	312			•		10		
FR	Naphtha	4.77		0.1	.			0.037	
FR	Naphtha	2,010		7.3				5.7	2.3
FR	Naphtha	77.4		0.1				0.037	
F.	Naphtha	635		0.2				0.1	
									(continued)

TABLE 4-7. (Continued)

	Petroleum				HAP Em	HAP Emissions (lb/yr)	(b/yr)		
Tank	liquid	Throughput		Ethylene	Ethylene	Glycol			
type*	type	(Mbbl/yr)	Benzene	dichloride	dibromide	ethers	ethers Naphthalene Toluene Xylene	Toluene	Xylene
FR	FR Naphtha	2,130	7.3					5.7	2.3
FR	Reformate	437		14.5				18.9	4.9
FR	Reformate	437						18.9	6.4
FR	Reformate	1,810		26.7				35	6.8
IFR	Naphtha	24.3	9.2					7.4	1.9
IFR	Naphtha	37.5	6.6					7.9	2.1
IFR	Other	15.3	8.1					6.5	1.6
	Total	emissions by HAP	198	60.4	0.000415	15	72.4	265	78
*FIX =	FIX = Fixed roof	FR * Externa	FR * External floating roof		IFR = Internal floating roof	oating roo	ţ		

	80
	Ŧ
	_
	c
	-
	·
	C
	$\overline{}$
	U
	ō
	_
ŀ	J
	ت
	ت
	ت
	ت
	ت

	Petroleum			HAP Emissions (1b/yr)	lb/yr)
Tank	liquid	Throughput (Mbb) /vr)	Benzene	Toluene	Xylene
FIX	Crude		0.00023		
FIX	Distillate fuel		1.72	0.55	0.183
FIX	Distillate fuel			1810	1490
FIX	Distillate fuel		0.554	0.17	0.0453
FIX			0.161	0.0437	0.0101
FIX	Distillate fuel		1.2	0.376	0.125
FIX	Distillate fuel		0.294	0.0832	0.0192
FIX	Distillate fuel		1.11	0.34	0.113
FIX	Distillate fuel		1.46	0.507	0.169
FIX	Distillate fuel		0.0278	3.71	4.76
FIX	Distillate fuel			9.97	11.8
FIX	Distillate fuel		0.1	0.0286	0.00816
FIX	Distillate fuel		0.929	0.271	0.0774
FIX	Distillate fuel		4.97	10.6	0.0024
FIX	Distillate fuel			13.7	9.52
FIX	Gasoline		6.28	13.4	1.97
FIX	Gasoline		8.77	18	2.85
FIX	Gasoline		0.000144	0.000039	0.000144
FIX	Gasoline		96.6	21.4	3.48
FIX	Gasoline		7.54	17.4	2.72
FIX	Gasoline		67.1	154	24.6
FIX	Gasoline		6.71	12.2	2.18
FIX	Gasoline		11.6	26.9	4.25
FIX	Gasoline		15.6	35.6	5.66
FIX	Gasoline		20.2	44.2	7.14
FIX	Gasoline		32.4	72.3	11.7
FIX	Gasoline		13.9	30.8	4.94
FIX	Gasoline		13.8	31.3	4.86
FIX	Jet kerosene		92.7	206	35.1
FIX	Jet kerosene		51.5	120	18.6
FIX	Jet kerosene		129	283	50.5
FIX	Jet kerosene		9.89	153	24.7
FIX	Jet kerosene		96.2	215	34
					(continued)

	Petroleum			HAP Emissions (lb/yr)	lb/yr)
Tank type*	liquid type	Throughput (Mbb1/yr)	Benzene	Toluene	Xylene
FIX	Jet kerosene		152	345	61.8
FIX	Jet kerosene		7.5	159	24.3
FIX	Jet kerosene		7.53	. 16.1	2.41
FIX	Jet kerosene			6.04	7.86
FIX	Jet kerosene			1.74	1.95
FIX	Jet kerosene			3.98	S
FIX	Jet kerosene			5.89	7.66
FIX	Jet kerosene			5.73	7.36
FIX	Jet naphtha			1.63	1.86
FIX	Jet naphtha			1.76	2.28
FIX	Jet naphtha			1.51	1.75
FIX	Jet naphtha			0.968	1.11
FIX	Jet naphtha			0.0535	0.0585
FIX	Jet naphtha			1.24	1.37
FIX	Jet naphtha			306	353
FIX	Jet naphtha		0.414	0.118	0.0296
FIX	Naphtha		81.4	0.00487	
FIX	Other			1.62	1.1
FIX	Other		0.384	50.9	58.1
FIX	Other		0.298	42.2	49.4
FIX	Other			22	14.2
FIX	Other		0.058	7.74	8.58
FIX	Other		4.0	53.2	61.5
FIX	Other			13.7	8.87
FIX	Other		0.0349	0.093	0.00233
FIX	Other		0.306	0.0996	0.0312
FIX	Slop oil		0.357		
FIX	Toluene			730	
FIX	Toluene			1450	
FIX	Toluene			143	
FIX	Toluene			1490	
FIX	Xylene				64
FR	Crude		0.00122	0.000406	

	Petroleum		HAP Em1	HAP Emissions (1b/yr)	
Tank type*	liquid type	Throughput (Mbb1/yr)	Benzene	Toluene	Xylene
FR	Crude		0.00211		
FR	Crude		0.00525		
FR	Crude		0.000618	0.00206	
FR	Crude		0.00308		
FR	Crude		0.00602		
FR	Distillate fuel		0.0295	0.00661	0.0295
FR	Distillate fuel		0.0721	0.0227	0.00802
FR	Distillate fuel		0.00423	0.00117	0.00027
FR	Distillate fuel		0.0137	0.00395	0.00105
FR	Distillate fuel		0.0746	0.0232	0.00877
FR	Gasoline		60.7	125	19.3
FR	Gasoline		197	457	9.06
FR	Gasoline		100	231	36.6
FR	Gasoline		6.46	207	31.4
FR	Gasoline		105	240	36.6
FR	Gasoline			0.856	986.0
FR	Gasoline		99.4	218	34.2
FR	Gasoline		101	214	31.3
FR	Gasoline		38.2	79.1	12.2
FR	Gasoline		8.2	16.6	2.55
FR	Gasoline		118	250	37.6
FR	Gasoline		44.7	93.2	15
FR	Gasoline		109	244	39.8
FR	Gasoline		221	35	
FR	Gasoline		64.6	137	21.5
FR	Gasoline		9.06	201	32.1
FR	Gasoline		24.9	5.8	9.16
FR	Gasoline		87.1	197	30.6
FR	Gasoline		106	230	33.9
FR	Gasoline		57.6	13	18.2
FR	Jet kerosene		0.382	0.819	0.123

$\boldsymbol{\sigma}$
Φ
3
=
₩.
u
=
0
U
_

	Petroleum		HAP Emis	HAP Emissions (1b/yr)	
Tank type ¢	liquid type	Throughput (Mbb1/yr)	Benzene	Toluene	Xylene
FR	Jet kerosene		4.93	10.4	1.52
FR	Jet kerosene			12.7	14.7
FR	Jet kerosene			13.7	15.9
FR	Jet kerosene			0.0416	20
FR	Jet kerosene		0.0341	65.6	11.1
FR	Jet naphtha		,	2.41	2.78
FR	Jet naphtha			12.4	15.8
FR	Jet naphtha			0.0161	0.0191
FR	Jet naphtha			0.189	0.206
FR	Jet naphtha			3.1	3.57
FR	Jet naphtha			16.7	21.3
FR	Jet naphtha			24.5	28.2
FR	Jet naphtha			49.3	63.9
FR	Jet naphtha			15	17.3
FR	Jet naphtha			2.2	2.39
FR	Jet naphtha			2.25	0.264
FR	Naphtha		107	0.00594	
FR	Naphtha		0.212	27.8	0.212
FR	Other		20	106	16.7
FR	Other		0.00019		
FR	Other		0.000063		
FR	Other		17.3	36.4	5.4
FR	Other			1.86	2.15
FR	Other		33.7	71	10.5
FR	Other		0.000402	0.000134	
FR	Other		r	12	15.5
FR	Other			1.89	2.23
FR	Other		11.5	24.5	3.61
FR	Other		0.000108		
FR	Other		19.7	41.4	6.17
FR	Other		0.00619	98.0	0.994
FR	Other			569	
FR	Other		0.0141	1.87	2.21

(Continued)	
4-8.	
TABLE	

	Petroleum		HAP Emiss	HAP Emissions (1b/yr)	
Tank 1	liquid	Throughput			
type* t	type	(Mbbl/yr)	Benzene	Toluene	Xylene
FR	Other			2.02	1.5
FR	Slop oil		0.000792		
FR	Slop oil		0.000803		
FR	Slop oil		0.00098		
FR	Slop oil		0.00101		
FR	Slop oil		0.000768		
FR	Slop oil		0.000451		
FR	Slop oil		0.00137		
FR	Slop oil		0.00736		
FR	Slop oil		0.000866		
FR	Slop oil		0.00895		
FR	Slop oil		0.000858		
FR	slop oil		0.00076		
	Total emissions by HAP	, HAP	2,960	12,500	3,320
TO TO THE PERSON AND A		DD = Dyternal floating roof	TFR - Internal floating roof	oating roof	
*FIX = FIXED FOOL		TIDACTUA TOOT	11 + 11100 HT WAT	1))) 1 P	

REFINERY J	
т 1	
(EMISSIONS	The state of the s
TANK	
STORAGE	
4-9.	
TABLE 4-	

Petr	Petroleum				HAP Emissions (lb/yr)	s (1b/yr)		
Tank	11quid	Throughput	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ethylene	Ethylene	Naphthalene	Toluene	Xvlene
type*	type	(MDD1/Yr) **	Benzene	alcutorine	antmototo	and the second second		
FIX	Gasoline		-				1.2	6.0
FIX	Gasoline		4.8				1.3	0.11
FIX	Gasoline		0.59				0.24	0.072
FIX	Gasoline		0.44				0.51	0.27
FIX	Gasoline							0.04
FTX	Gasoline		1.5			0.00054	0.74	0.62
XIA	Gasoline		80			0.003	4.1	3.4
FIX	Gasoline		5.6			0.0021	2.9	2.4
96	Gasoline		6.7			0.012	7.2	ო
. 0	out los es		7.8				80	3.3
: E	Gasoline		8.1			0.0068	8.4	3.4
G.	Gasoline		8.6			0.018	10.7	4.4
Cr Li	Gasoline		7.3				7.5	3.1
: 6	Gasoline		7.6	0.012	0.002	0.018	7.7	3.5
. e	Gasoline		0.42				0.49	0.25
: 0	Gasoline					0.000072	0.84	1.3
	Gasoline		3.5			0.000072	0.85	1.3
4 0	Gasoline		1.3				2.8	1.1
Y 02	Gasoline		1.5			0.0000058	2.6	1.1
. .	0.000		-				2.7	1.1
# E	Gasottie) O1				9.3	3.8
¥.	Gasottile		, ,			0.015	9.1	3.7
F.	Gasoline		2. 0			610.0	י ס י	. o
FR	Gasoline		m. m				?	
FR	Gasoline						ē	•
FR	Gasoline		7.7			•	n .	? .
IFR	Gasoline		6.8			0.0073	4.6	3.1
IFR	Gasoline		9.9			0.0072	9.5	3.1
IFR	Gasoline		11				0.59	,
IFR	Gasoline		6.6				m	0.049
IFR	Gasoline		4.1			0.0091	3.5	1.9
IFR	Gasoline		4.1			0.0093	3.6	1.9
IFR	Gasoline		10.4			0.0039	5.3	4.4
IFR	Gasoline		7.4	0.02	0.005	0.018	7.6	3.4
IFR	Gasoline		9.3			0.017	10	4.1
IFR	Gasoline		11			0.015	11.3	5.2
TFR	Gasoline		3.8	0.0063	0.001	0.0092	3.9	1.7
TFR	Gasoline		3.7			0.0066	3.9	1.6
TFR	Gasoline		0.68	0.0011	0.00018	0.0017	69.0	0.31
1 G	9410040		3,1				3.2	1.3
1 1 1 1	Gasoline		2.9				2.9	1.2
IFR	Gasoline		3.6			0.0065	3.9	1.6
	- 10 E	of the by HAD	213	0.0394	0.00518	0.186	188	84
	וסרמז בוווד	TOLAT WILLSTONS DY HAF	, , , , , , , , , , , , , , , , , , , ,					

IFR - Internal floating roof FR = External floating roof ** Confidential for this refinery. *FIX = Fixed roof

	Detroleum				HAP Emissions	(1b/yr)		
nk	11qu1d	Throughput (Mbb1/vr)	Benzene	Cresol	Naphthalene	Phenol	Toluene	Хуlепе
ed :	CYPE		0.146	0.000588	0.0942	0.000235	0.594	0.972
× ;	Cruae		48.5	0.0274		0.0157	158	177
× :	Gasoline		0.126	0.000529	0.0227	0.0000991	0.253	0.299
×	DEC KETORGES		0.00104	0.0000634	0.00592	0.00000458	0.0044	0.0131
×	Other		0.000131	0.000008	0.000746	0.00000057	0.0005	0.0016
×	Other		0.239	0.000964	0.155	0.000386	0.975	1.6
	Crude		0.435	0.00176	0.281	0.000702	1.78	2.9
	Crude		0.645	0.00261	0.417	0.00104	2.64	4.31
	Crude		1,006	0.00406	0.65	0.00162	4.11	6.72
	Crude		2.003	0.00807	1.29	0.00323	9.16	13.4
	Cruae		0.0958	0.000387	0.062	0.000154	0.391	0.64
	Crude		0.103	0.000419	0.0672	0.000167	0.424	0.694
	Crude		1.95	0.00786	1.26	0.00315	7.95	13
	Crude		2.74	0.011	1.77	0.00442	11.2	18.3
	Crude		1.608	0.0065	1.04	0.0026	6.57	10.8
	enne		1.49	0.00599	0.961	0.00239	90.9	9.92
	Crude		1.108	0.00447	0.717	0.00179	4.53	7.39
~	Crude		0.208	0.000838	0.134	0.000335	0.847	1.39
œ	Crude		1 48 0	0.00348	0.557	0.00139	3.52	5.75
œ			0 00018752	0.00195	0	0.000238	0	0.0003
œ			2000000	0.00357	0	0.000438	0	0.0006
œ			0.0000	990000	0	0.000448	0	0.0007
œ	Distillate fuel		#CC00000 ·	0.0092	0	0.00112	0	0.0017
œ	Distillate fuer		0.00049599	0.00514	0	0,000628	0	0.0009
œ.	Distillate fuer		0.00205	0.0212		0.0026		0.0040
œ	Distillate ruel		0.00641	0.00000362	•	0.00000207	0.0209	0.0234
œ	Gasoline		0.991	0.00056		0.00032	3.23	3.62
ي عو	Gasoline		53.9	0.0305		0.0174	176	197
* !	autioses of		0.0357	0	0	0	24.9	115
×	Gasoline		0.0334	0	0	0	23.4	108
¥ !	ed sout tile		0.0269	0	0	0	18.8	86.5
24	easotine		7 00	0.0827	0	0.0531	136	96.3
FR	Gasoline						(continued)	(pen

TABLE 4-10. (Continued)

	Petroleum				HAP Emissions (1b/yr)	lb/yr)		
Tank type*	liquid type	Throughput (Mbb1/yr)	Benzene	Cresol	Naphthalene	Phenol	Toluene	Xylene
FR	Gasoline		21.2	0.012	0	0.00687	69.4	17.7
FR	Gasoline		57.1	0.0323	0	0.0185	187	209
FR	Gasoline		3.57	0.00202	0	0.00115	11.6	13
FR	Gasoline		51.6	0.0291	0	0.0167	169	188
FR	Gasoline		51.8	0.0293	0	0.0167	169	189
FR	Gasoline		18.3	0.0103	0	0.0059	59.6	66.7
FR	Gasoline		54.5	0.0308	0	0.0176	178	199
FR	Gasoline		0.216	0.000122		0.0000698	0.706	0.789
FR	Gasoline		19.8	0.0112	0	0.00641	64.9	72.4
FR	Gasoline		29.3	0.0166		0.00946	95.7	107
FR	Gasoline		40.07	0.0227	0	0.013	131	146
FR	Gasoline		42.6	0.0241	0	0.0137	139	156
FR	Gasoline		15.6	0.00881	0	0.00503	50.9	56.9
FR	Gasoline		15.9	0.00898	0	0.00513	51.9	58
FR	Gasoline		3.26	0.00184	0	0.00105	10.6	11.9
FR	Gasoline		18.4	0.0104	0	0.00593	09	67.1
FR	Gasoline		3.801	0.00215	0	0.00123	12.4	13.9
FR	Gasoline		4.44	0.00251	0	0.00143	14.5	16.2
FR	Gasoline		17.6	0.00993	0	0.00568	57.4	64.2
FR	Gasoline		21.6	0.0122	0	0.00699	7.07	79
FR	Gasoline		18.2	0.0103		0.00587	59.4	66.4
FR	Gasoline		11.9	0.00674	0	0.00385	38.9	43.5
FR	Gasoline		1.32	0.000746		0.000426	4.31	4.82
FR	Gasoline		1.32	0.000746		0.000426	4.31	4.82
FR	Gasoline		1.7	0.000959	~	0.000548	5.55	6.2
FR	Jet kerosene		3.15	0.0133	0.569	0.00249	6.34	7.51
FR	Jet kerosene		0.131	0.011	1.04	0.00106	0	0.79
FR	Jet kerosene		0.137	0.0115	1.09	0.00111	0	0.828
FR	Jet kerosene		0.107	96800.0	0.848	0.000861	0	0.642
FR	Jet kerosene		0.0475	0.00399	0.377	0.000383	0	0.286
FR	Jet kerosene		0.268	0.0225	2.12	0.00216	0	1.61
FR	Jet kerosene		0.264	0.0222	2.1	0.00214	0	1.59

	Petroleum				HAP Emissions (1b/yr)	(1b/yr)		
Tank	liquid	Throughput (Mbbl/yr)	Benzene	Cresol	Naphthalene	Phenol	Toluene	Xylene
FR	Jet kerosene		2.2	0.00923	0.396	0.00173	4.42	5.23
FR	Jet kerosene		0.073	0.00615	0.582	0.000592	0	0.441
FR	Jet kerosene		0.185	0.0155	1.47	0.00149	0	1.11
FR	Jet kerosene		0.177	0.0149	1.41	0.00143	0	1.07
FR	Jet kerosene		0.0982	0.00825	0.781	0.000793	0	0.592
FR	Jet kerosene		0.0223	0.00187	0.177	0.000181	0	0.134
R.	Jet kerosene		2.1	0.00884	0.38	0.00166	4.22	S
FR	Jet naphtha		0	0.0262	0.429	0.0139	0.746	2.45
æ	Jet naphtha		0	0.0706	1.16	0.0375	2.007	9.9
E.	Jet naphtha		0	0.0737	1.21	0.0391	2.1	68.9
F.	Jet naphtha		0	0.0761	1.25	0.0404	2.17	7.12
FR	Jet naphtha			0.623	10.2	0.331	17.8	58.3
FR	Other		0.121	0.00734	0.685	0.00053	0.515	1.52
FR	Other		0.0366	0.00223	0.208	0.000161	0.157	0.461
FR	Other		0.171	0.0104	0.968	0.00075	0.728	2.14
F.R.	Other		0.177	0.0108	-	0.000777	0.755	2.22
FR	Other		5.88	0	0.667	0	31.1	40.5
FR	Other		0.179	0.0109	1.02	0.000787	0.765	2.26
FR	Other		0.232	0.0141	1.31	0.00102	0.99	2.92
7. 2.	Other		0.0743	0.00452	0.421	0.000326	0.317	0.934
H.	Other		0.0194	0.00119	0.11	0.0000853	0.0829	0.24
ir E	Other		1,23	0.0751	7	0.00542	5.26	15.5
r.	Other		0.0404	0.00246	0.23	0.000178	0.172	0.509
FR	Other		0.661	0.0402	3.75	0.0029	2.82	8.31
o¥i Gu	Other		0.679	0.0413	3,85	0.00298	2.9	8.53
FR	Other		0.151	0.00919	0.857	0.000663	0.645	1.89
FR	Other		0.151	0.00919	0.857	0.000663	0.645	1.9
FR	Other		0.152	0.00924	0.862	0.000666	0.645	1.91
F.	Other		5.06	0.308	28.8	0.0222	21.6	63.7
FR	Other		7.2	0	0.816	0	38	49.6
FR	Other		6.57	0	0.745	0	34.7	45.3
FR	Other		7.9	0	968.0	0	41.7	54.5

_
ಶ್
ă
5
tinned
Cont
Ö
.01
4-10.
4

	Petroleum				HAP Emissions (lb/yr)	(1b/yr)		
Tank type*	liquid type	Throughput (Mbb1/yr)	Benzene	Cresol	Naphthalene	Pheno1	Toluene	Xylene
FR	Other		0.634	0.0386	3.6	0.00279	2.71	7.98
FR	Other		0.139	0.00848	0.79	0.000611	0.594	1.75
FR	Other		0.121	0.00736	0.687	0.000531	0.516	1.52
FR	Other		0.121	0.00734	0.685	0.000531	0.515	1.52
FR	Other		0.121	0.00736	0.687	0.000531	0.516	1.52
FR	Other		0.122	0.00741	0.692	0.000536	0.52	1.54
FR	Other		0.122	0.00741	0.692	0.000536	0.52	1.54
FR	Other		0.122	0.00741	0.692	0.000536	0.52	1.54
FR	Other		0.122	0.00741	0.692	0.000536	0.52	1.54
FR	Other		0.000141	0.00000857	0.000799	0.00000061	9000.0	0.0017
FR	Other		0.106	0.00646	0.603	0.000467	0.454	1.33
FR	Other		0.101	0.00613	0.572	0.000443	0.43	1.26
FR	Other		0.00548	0.000334	0.0311	0.0000241	0.0234	690.0
H.	Other		0.216	0.0131	1.22	0.000948	0.921	2.71
FR	Other		1.23		0.14		6.5	8.48
FR	Other		0.129	0.00787	0.734	0.000568	0.552	1.62
FX	Crude		0.121	0.000488	0.0782	0.000195	0.493	0.807
FX	Distillate fuel		0.000171	0.00177		0.000216		0.0003
FX	Gasoline		7.02		0.797		37.1	48.4
FX	Gasoline		55.1	0.0311		0.0178	180	201
FX	Gasoline		54.6	0.0309		0.0176	178	199
FX	Jet kerosene		0.918	0.00386	0.166	0.000724	1.84	2.18
FX	Other		0.00112	0.0000682	0.00636	0.00000492	0.0047	0.0141
	Total emissions b	ons by HAP	098	2.33	106	0.852	2,960	3,700

*FIX * Fixed roof FR * External floating roof IFR * Internal floating roof

TABLE 4-11. REPORTED NUMBER OF TANKS BY PETROLEUM LIQUID TYPE

		Tank Type		
		External	Internal	
Petroleum liquid type	Fixed roof	floating roof	floating roof	Total
	1001		1001	
Alkylate	-	1	-	1
Carbon tetrachloride	-	- '	-	1
Curde	18	37	2	57
Diesel/distillate fuel	16	1.3	-	29
Gasoline	28	125	22	175
Jet/kerosene	18	26	2	46
Jet napththa	8	19	-	27
Naphtha	2	30	3	35
Others	24	59	1	84
Reformate	-	6	-	6
Residual fuel oil	-	3	-	3
Slop oil	1	15	1	17
Toluene	4	1	-	5
Xylene	1	-	-	1
Total	121	335	31	487
Percent of total number of tanks	24.8	68.8	6.4	

TANKS
STORAGE
FOR
FACTORS
EMISSION
TANK
4-12.
TABLE

					•	Tank Emission P		ATT TO A TE /ATT	P4 P8 /100 00	THISTY PAR	Emission Factors by HAP (1b/yr per 1000 Bb1/sd refinery process capacity)	(4)	***************************************		
Tank type*	Petroleum liquid type	Benzene	Carbon tetra. Chloro. chloride benzene	Chloro. benzene	Chloro- form	Cresol	1,4.Dloxane	Ethylene dichloride	Ethylene dibromide	Glycol ethers	Naph- thalene	Phenol	Styrene	Toluene	Xylene
FIX	Carbon tetrachloride		0.99												
FIX	Jet kerosene	2.54		0.02	0.47	0.0000395	1.72	0.03	0.2		0.278	0.00000652	0.01	5.11	1.08
FIX	Others	0.098				0.00000126				0.273	0.000117	0.0000000443		0.69	0.678
FIX	Slop oil	0.00246													
FIX	Crude	0.324				0.00000969					0.00155	0.00000176		0.443	0.291
FIX	Distillate fuel	0.118		0.49	3.17	0.0298	15.9	0.45	-		0.14	0.0595	0.35	5.85	1.84
FIX	Gasoline	0.903				0.000805					0.00316	0.00046		2.32	1.57
FIX	Jet naphtha	0.00286												2.16	2.5
FIX	Naphtha	0.449												0.033	0.0473
FIX.	Toluene													26.3	
FIX	Xylene														0.441
7	Gasoline	3.99				0.0037		0.0175	0.0000678		0.000432	0.00217		8.79	6.82
FR	Jet naphtha	0.609				0.00784					0.128	0.00416		0.426	0.504
F.	Reformate	0.988						2.75			0.0000264			1.87	0.499
FR	Alkylate	0.467												1.35	0.00608
FR	Crude	1,11				0.000527					0.0844	0.000211		0.185	0.248
FR	Distillate fuel	0.0007				0.000403					0.00727	0.0000493		0.0148	0.00597
F.	distillate fuel	0.00832				0.000507					0.0472	0.0000366		0.0355	0.105
FR	Jet kerosene	0.0443				0.00143		0.000181	0.0000307		0.201	0,000163		0.167	0.173
P. P.	Naphtha	0.795						0.14						0.786	0.312
8	Others	0.01				0.0057					0.159	1.02		1.99	0.607
FR	Slop oil	0.0133												0.0185	0.00314
R.	Toluene													1.38	
IFR	Gasoline	0.359						0.00000023	0.0000222		0.000775			0.19	0.665
IFR	Slop oil	0.0165												0.0152	0.0008
IFR	Crude	0.01		0.01	0.13			0.05	0.01					0.07	0.03
IFR	Jet kerosene	0.29						0.00155	0.000264					0.837	0.0835
IFR	Naphtha	0.318		0.03	0.36		1.37	0.03	6.15				0.01	0.259	0.0742
IFR	Others	0.147												0.118	0.020

5.0 WASTEWATER COLLECTION AND TREATMENT

5.1 BACKGROUND INFORMATION

Wastewater is generated by many different petroleum refinery processes and collected by a plant-wide oily water sewer system. It then enters a treatment system in order to remove oils and solids from the water. The specific design of a wastewater treatment system depends on the quantity of wastewater generated, the contaminant concentration, and the desired level of treatment. Some wastewater collection and treatment units may be open to the atmosphere, thus providing a source for hazardous air pollutant (HAP) emissions.

5.1.1 Sources of Refinery Wastewater

Refinery wastewater can be generated through direct contact with organic compounds from refinery processes or through indirect contact with organic compounds. Sources of direct contact wastewater include: 1

- water used to wash impurities from products or reactants;
- water used to cool or quench vapor streams;
- water used as a carrier for catalyst or caustic solutions;
- water formed as a by-product during reactions;
- condensed steam from jet eductor systems; and
- condensed stripping steam.

Although indirect contact wastewater streams do not come in contact with organic compounds in process equipment, the potential exists for organic contamination of these wastewater streams. Indirect contact wastewater may become contaminated as a result of leaks from heat exchangers, condensers, and pumps.

Direct and indirect contact wastewaters are combined and transported to a wastewater treatment plant.

5.1.2 <u>Description of Wastewater Collection and Treatment Units</u>

A wastewater collection and treatment system is generally comprised of the following units:

- drainage and collection system;
- primary treatment units for oil removal;
- intermediate treatment units for further oil removal;
 and
- secondary treatment units for final control.
- 5.1.2.1 <u>Drainage and Collection System</u>. In a typical refinery, wastewater is collected by individual drains that feed into the main process sewer line. Drains are normally open to the atmosphere and provide a venue for HAP's to be emitted. Drains may be dedicated to one piece of equipment or serve several sources. The sewer line carries the wastewater to downstream collection units, such as junction boxes, sumps, and lift stations. Junction boxes serve as a point of convergence for sewer lines, and sumps are typically used for collection and equalization of wastewater flow; both may be open to the atmosphere. Wastewater may then be discharged to a lift station where it is pumped to the treatment system.²

Factors affecting HAP emissions from the drainage and collection system include the physical dimensions of each collection unit, climatic factors, physical and chemical characteristics of the HAP's in the wastewater stream, and the stream flow rate.²

- 5.1.2.2 <u>Primary Treatment Units</u>. Primary treatment units serve as the initial means to separate solids and hydrocarbons from wastewater. The most common primary treatment units are oil-water separators and air flotation units.
- 5.1.2.2.1 <u>Oil-water separators</u>. Separating oil from the water is frequently the first step in wastewater treatment.
 Oil-water separators use gravity to remove solids and oils contained in the wastewater. Oils and pollutants with specific

gravities less than water float to the top and are skimmed off.

Most of the organics contained in the wastewater tend to

partition to the oil phase; therefore, the wastewater leaving the

oil-water separator is reduced in organic loading.

Emissions from oil-water separators are determined by the characteristics of the wastewater and oil layers, ambient wind speed, and the design characteristics of the separator.²

There are several different types of separators. The most common are American Petroleum Institute (API) separators and corrugated plate interceptors (CPI). The API separators use skimmers to remove oil before it enters a quiescent zone, where oil droplets coalesce. Oil droplets are then skimmed from the water surface again at the downstream end of the separator. Corrugated plate interceptors use parallel plates which allow oil droplets to coalesce and form a floating layer that is skimmed from the water.

5.1.2.2.2 <u>Air flotation systems</u>. Air flotation is commonly used to remove free oil, colloidal solids, emulsified oil, and suspended solids after the oil-water separation process. In air flotation systems, bubbles are formed by introducing air directly into the wastewater. The bubbles attach to oils and solids in the wastewater, causing the density of these substances to be less than the density of the liquid. Oils and solids then rise to the top of the flotation system, where they are removed.¹

Two types of air flotation systems are used in petroleum refineries: dissolved air flotation systems (DAF) and induced air flotation systems (IAF). Both rely on basic air flotation principles for removing oils and solid, but they have a number of mechanical and structural differences. A DAF system is characterized by relatively quiescent flotation, high retention times, and small quantities of air dissolved in the wastewater. An IAF is a more turbulent system, has lower retention times, and uses large quantities of air. 1

5.1.2.3 <u>Intermediate Treatment Processes</u>. Following oil-water separation and air flotation, wastewater streams can be

further treated by a number of processes, such as coagulation-precipitation, filtration, and equalization.

- 5.1.2.3.1 <u>Coagulation-precipitation</u>.

 Coagulation-precipitation is the process by which chemical coagulants are added to wastewater in order to break oily emulsions. The coagulant reduces the charge repulsion between particles and allows them to combine and form larger particles that settle or float by gravity in a precipitation or sedimentation tank, where they are removed. 1
- 5.1.2.3.2 <u>Filtration</u>. Several types of filtration devices have been developed for removing free and emulsified oil from refining wastewaters. These filters range from units using a simple sand medium to those containing media, such as carbon, that exhibit specific affinities for oil.

The filtering medium is usually contained within a basin or tank and is supported by an underdrain system that allows the filtered water to be drawn off, while retaining the filter medium in place.

5.1.2.3.3 <u>Equalization</u>. Flow equalization is used to balance the quantity of wastewater before further treatment. Equalization basins minimize the effects of large periodic discharges on downstream treatment processes. Biological processes, as well as physical-chemical systems, operate more efficiently under regulated flow conditions.¹

The size of the equalization system depends on the storage capacity required. They are often aerated to maintain aerobic conditions in the wastewater, thus alleviating odor problems.

5.1.2.4 <u>Secondary Treatment Processes</u>. Secondary treatment processes are used to remove dissolved organics through oxidative decomposition by microorganisms. The particular processes used at a refinery are determined by the flow and contaminant characteristics of the wastewater to be treated. Frequently used secondary treatment processes include activated sludge, trickling filters, oxidation ponds, and rotating biological contactors.

Clarifiers are used to remove suspended solids by gravity separation; they always follow biological treatment systems.

5.2 METHOD FOR DEVELOPING HAZARDOUS AIR POLLUTION EMISSION FACTORS FOR WASTEWATER COLLECTION AND TREATMENT PROCESSES

Wastewater emission factors were developed for each collection and treatment process by compiling information from California refineries. Correlations were generated between hazardous air pollutant (HAP) emissions from treatment units and the wastewater flow entering each treatment unit.

5.2.1 <u>California Refinery Wastewater Collection and Treatment Database</u>

Ideally, HAP emissions from wastewater collection and treatment units should be based on the composition and physical characteristics of a wastewater stream and mass transfer models representing each collection or treatment unit. However, the California Refinery Database does not contain speciated wastewater composition data for individual wastewater streams.

An alternative emissions estimation method was developed based on the average emissions of HAP's reported by California refineries complying with the Air Toxics "Hot Spots" Information and Assessment Act of 1987 (AB 2588). For this approach, the minimum information necessary for calculating emissions from wastewater collection and treatment systems was:

- the specific HAP emissions from each wastewater unit;
- the throughput entering each wastewater unit; and
- the charge capacity of each refinery process unit.

Information form all but two refineries reporting HAP emissions from wastewater collection and treatment units met this criterion.

Table 5-1 presents emissions information from treatment units reported by each refinery. Table 5-2 presents the wastewater flow entering each treatment process reported by the refineries.

5.2.2 <u>Development of Hazardous Air Pollutant Emission Factors</u>

The HAP emission factors were generated by dividing the specific HAP emissions reported by each refinery for each wastewater unit by the throughput entering each wastewater unit.

TABLE 5-1. HAZARDOUS AIR POLLUTANT EMISSIONS BY WASTEWATER TREATMENT UNIT (1b/yr)

Refinery	Refinery Pollutant	Oil-water separators	Air flotation	Bio- treatment	Air Bio- lotation treatment Equalization	Open	sdwns	Misc. treatment	Total
A	Benzene Toluene Xylene	26 84 269		719 618 632	1 2 10	1,830 1,180 1,650		564 908 20	3,140 2,792 2,581
д	Benzene Toluene Xylene	412 2,390 675	52 16 18	3,800 9,860 8,140					4,264 12,266 8,833
υ .	Benzene PAH Toluene Xylene	1,013 2.67 532 259	4,961						1,013 2.67 532 5,220
5 - 6	Benzene Chlorobenzene Chloroform Cresol 1,4-Dioxane Ethylene dichloride Ethylene dibromide Naphthalene Phenol Styrene Toluene	6.5 68.1 7.7 1.7 0.1 8.8 5.8 6.5 7.6							6.5 6.0 6.1 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
ធ	Benzene Naphthalene Toluene Xylene	3.49 0.024 18.7 6.63		242 1.65 1.65 1,290 458					245 1.67 1,309 465
								uoo)	(continued)

TABLE 5-1. (Continued)

Refinery	Refinery Pollutant	Oil-water separators	Air flotation	Bio- treatment	Air Bio- lotation treatment Equalization	Open ponds	sdwns	Misc. treatment	Total
ĒΨ	Benzene Toluene	971 2,180							971 2,180
v	Benzene Toluene Xylene	389 7.1						255 255 574	644 262 575
н	Acetaldehyde Anthracene Arsenic Benzene	0.05 .3 0.0015 460							0.05 .3 0.0015 460
. 5- 7	benzopyrene 1,3-Butadiene Formaldehyde Mercury Naphthalene Toluene Xylene	78.7 1.12 0.002 0.076 33.3							78.7 1.12 0.002 0.076 33.3
н	Benzene Toluene Xylene	687 517 344	6,880 11,200 15,500			26.6 0.2 13.3	35.3 42 28		7,629 11,759 15,885
p	Toluene	2.1							2.1
×	Benzene Naphthalene Toluene Xylene	367 236 1,520 2,460		•					367 236 1,520 2,460
	TOTAL	16,170	38,626	25,761	13.0	4,700	105	2,576	87,950

Note: A blank entry indicates no data were reported

TABLE 5-2. FLOW ENTERING TREATMENT UNIT (106 gal/yr)

Refinery	Oil-water ry separators	Air flotation	Biotreatment	Equalization	Open ponds	SdwnS	Miscellaneous treatment
Ą	630		0.883	0.16			1,220
В							
υ	518	518					
Q	2.05						
Ħ	2.12		2.92				
[4	1,700						
ტ 5-	167						64.9
н -8							
н	1,720	1,720					
ט	1,260						
×	1,270						

Note: A blank entry indicates no data were reported

Average HAP factors were calculated from the refineries reporting applicable data. Table 5-3 presents the average HAP emission factors (in $1b/10^6$ gallons).

5.2.3 Total Wastewater Generated from Refineries

The total wastewater generated by refineries nationwide can be estimated using factors developed in a previous study of wastewater generation in refineries.³ Table 5-4 presents the factors used to calculate total wastewater generated. Table 5-5 presents the total wastewater generated from the California refineries, based on the generation factors and process capacities found in the Oil and Gas Journal.⁴

5.3 DATABASE LIMITATIONS

The wastewater database has some obvious inadequacies. No collection units and only six treatment units were reported by all of the refineries. The only treatment unit reported by all of the refineries was the oil-water separator. However, five refineries did not report any other treatment units after oil-water separation. Only one refinery reported equalization and sumps as part of the treatment system. However, none of them reported the wastewater flow entering open ponds or sumps. Two refineries reported miscellaneous unspecified treatment units. The data on treatment units are lacking.

A total of 23 pollutants were reported. However, 15 of them (1,4-dioxane, styrene, PAH, cresols, chloroform, chlorobenzene, ethylene dichloride, ethylene dibromide, phenol, 1,3-butadiene, arsenic, anthracene, benzopyrene, formaldehyde, and mercury) were reported by only one refinery.

5.3.1 Hazardous Air Pollutant Emission Factors

The HAP emission factors listed in Table 5-3 are not representative of the number and quantity of HAP's reported for each treatment unit because of the lack of flow data. Refineries B, H, and I did not report flows for some of the units they reported emissions from. Therefore, these units were not used to develop the HAP factors. Emissions of several chemicals, such as 1,3-butadiene, were reported, but HAP emission factors

TABLE 5-3. AVERAGE HAZARDOUS AIR POLLUTANT EMISSION FACTORS (1b/106 gal)

Miscellaneous treatment	average range value	6.25 0.46 3.93 2.19	12.5 0.74 3.93 2.34 62.5 0.016 8.84 4.43
Equalization	average range value	6.25	12.5 62.5
tment	average range value	449	571 436
Biotreatment	ınge	814	700
Bi	r ra	82.9 814	442 157
flotation	average nge value	4	6.5 8 9.29
Air flo	range -		1 9.58
	1 1		9.01
arator	average value	1.16 0.0488 0.0488 0.0488 0.0488 0.829 0.829 0.829 0.051	1.78
эг вер	i	0.04 3.17	8.82
Oil-water separator	range	0	0.002
5	ı	Benzene Chlorobenzene Chloroform Cresol Ethylene dibromide I,4-Dioxane Naphthalene PAH Phenol	Joyrene Toluene Xylene

Note: A blank entry indicates no data were reported

TABLE 5-4. WASTEWATER GENERATION FACTORS (gal/bbls)

Refinery processes	Process drains	Cooling tower discharge	Sour water treatment discharge	Chemical treatment	Total
Crude storage Crude desalting Atmospheric distillation Gas processing Vacuum distillation Naphtha hydrodesulfurization Catalytic reforming Isomerization Alkylation Chemical sweetening Hydrodesulfurization Catalytic cracking Hydrocracking Lube oil processing solvent refining Dewaxing Hydrotreating(lube oil finishing) Visbreaking Coking	2.00 0.058 0.080 0.080 0.0835 0.237 0.235 0.104 1.12 0.104 0.640 10.8	0.07 1.33 0.40 1.00 0.966 5.72 1.71 0.765 3.02 0.815 1.61 6.72	70	3.20 0.396 1.80	0 1 2 2 2 2 2 2 3 3 5 3 5 5 5 5 5 5 5 5 5 5
Deasphalting Light product storage Hydrogen production Light product storage-sludges	• • •	45.6	0.04		0.340 0.110 111 0.110

Predict Wastewater Generation factors are presented in an article by Finelt, S. and Crump, J.R. <u>Generation</u>. Hydrocarbon Processing, August 1977. p.159-166

Note: A blank entry indicates no data were reported

WASTEWATER VOLUMES CALCULATED FROM FACTORS (106 gal/yr) TABLE 5-5.

Refinery	Process drains	Sour	Chemical treatment	Cooling tower	Wastewater generation per facility
A	211	699	2.34	225	1,008
B	418	862	1.17	263	1,545
ပ	247	630	1.64	230	1,108
Q	11.4	22.7	*	3.70	37.8
Ħ	421	1,049	1.31	306	1,777
(Ex-	220	336	*	131	289
5	54.8	86.9	*	16.8	159
н	235	612	2.48	249	1,098
н	228	475	1.26	183	887
p	248	618	1.90	241	1,110
K	153	445	1.46	156	756

Wastewater numbers are generated from factors presented in an article by Finelt, S. and Crump, J.R. <u>Predict Wastewater Generation</u>. Hydrocarbon Processing. August 1977. p.159-166

* = no inputs for chemical treatment

were not calculated because the respective refineries did not report wastewater flow.

gep.004

5.4 REFERENCES

- VOC Emissions from Petroleum Refinery Wastewater Systems--Background Information for Proposed Standards.
 U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC. Publication No. EPA-450/3-85-001a. February 1985.
- 2. Industrial Wastewater Volatile Organic Compound Emissions--Background Information for BACT/LAER Determinations. Radian Corporation, Research Triangle Park, NC. Publication No. EPA-450/3-90-004.
- 3. Finelt, S. and Crump, J.R. <u>Predict Wastewater Generation</u>. Hydrocarbon Processing. August 1977. p. 159-166.
- 4. Thrash, L.A. Annual Refining Survey. Oil & Gas Journal. March 26, 1990.

6.0 TRANSFER

6.1 BACKGROUND INFORMATION

The primary source of hazardous air pollutant (HAP) emissions from transfer operations is evaporative loss during transport vessel loading.

Stored petroleum products are pumped through metered loading areas, called loading racks, and into transport vehicles such as tank trucks, railcars, and marine vessels. Loading racks contain the equipment (pumps, meters, and piping) necessary to fill delivery tank vessels with liquid products. Refineries typically utilize anywhere from 2 to 10 rack positions, depending on their throughput capacity. Each loading rack typically has from one to four loading arms, depending on the products available for loading at the rack position. Racks may service many chemicals or be dedicated to one specific chemical. 1

6.1.1 Emissions from Loading Losses

Loading losses occur as organic vapors in "empty" cargo vessels are displaced to the atmosphere by the liquid being loaded into the vessels. These vapors are a composite of three factors: the vapors formed in the empty vessel by evaporation of residual product from previous loads, vapors transferred to the vessel in vapor balance systems as product is unloaded, and vapors generated in the vessel as the new product is being loaded.²

The quantity of loading losses from loading operations depends on the following parameters: physical and chemical characteristics of the previous cargo, method of unloading the previous cargo, method of loading the new cargo, and the physical and chemical characteristics of the new cargo.

6.1.1.1 <u>Product Characteristics</u>. The emissions of each constituent present in refinery products are largely dependent on their vapor pressures. Constituents with high vapor pressures

tend to volatilize more readily. Other characteristics that contribute to emissions are concentration of the chemical in the product, molecular weight of the chemical, flow rate of the liquid stream being transferred, and the temperature and pressure of the liquid being transferred.

6.1.1.2 Methods for Loading and Unloading. Material loading may be performed using either splash, top submerged, or bottom loading methods. In splash loading, the fill pipe dispensing the cargo is lowered only partway into the cargo vessel. This method creates considerable turbulence during loading and can create high levels of vapor mist, resulting in higher emissions. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.²

A second method of loading is submerged loading. In this method, the fill pipe extends almost to the bottom of the cargo vessel. During most of submerged loading the fill pipe opening is below the liquid surface level. This substantially reduces turbulence, which in turn reduces vapors and consequently, emissions.

In bottom loading, products are loaded into the cargo vessel from the bottom of the tank. As with submerged loading, the fill pipe is below the liquid surface level most of the time, thereby reducing turbulence and vapor generation.

6.1.1.3 Recent Loading History. If a vessel has carried a nonvolatile liquid or has just been cleaned, it will contain vapor free air. If the vessel is connected to a vapor balance system or has just carried gasoline or another volatile refinery product and has not been vented, the air in the carrier vessel will contain volatile organic vapors, which are expelled during the loading operations along with newly generated vapors.²

6.1.2 Other Emission Sources

A major source of emissions associated with the unloading of petroleum liquids from marine vessels are ballasting operations. Ballast is water that is loaded into the marine vessel's cargo tank compartments to improve its stability during voyage. Ballasting emissions occur when the vapor space in the "empty" cargo tank is displaced to the atmosphere by ballast water being pumped into the tank. Upon arrival at the next loading port, the ballast water is pumped from the cargo tanks to a tank on shore before new cargo is loaded. The ballasting of the cargo tanks reduces the quantity of vapors returning in the empty tank, thereby reducing the quantity of vapors emitted during the subsequent tanker loading.²

6.2 METHOD FOR DEVELOPING HAZARDOUS AIR POLLUTANT EMISSION AND THROUGHPUT FACTORS FOR TRANSFER OPERATIONS

Transfer factors relating emissions to refinery capacity were developed by compiling information from the California refinery database. Correlations between the speciated hazardous air pollutant (HAP) emissions and throughput per transport mode, as well as between throughput per transport mode and crude charge capacity, were generated.

6.2.1 California Refinery Transfer Database

Ideally, emissions from transfer operations would be based on the composition and characteristics of the streams flowing into the transport vessel, the method of loading, the capacity transferred, the number of loading arms and loading racks, and the AP-42 transfer equations. However, the data necessary for this type of calculation were not available.

An alternative method for estimating emissions was developed based on the average emissions of HAP's reported by California refineries complying with the Air Toxics "Hot Spots" Information and Assessment Act of 1987 (AB 2588). For this approach, the

minimum information necessary for calculating emissions from transfer operations was:

- throughput for each transport mode;
- specific HAP emissions from each transport mode; and
- crude charge capacity of each refinery.

Information from only five refineries met these criteria. These refineries' reported annual throughputs per emission source are presented in Table 6-1. Table 6-2 presents the HAP emissions from all the reporting California refineries. Several refineries were not included in developing HAP emission and throughput factors because of lack of throughput data.

6.2.2 <u>Development of Emission Factors</u>

Two factors were developed to characterize the transfer database: the HAP emission factor, and the throughput factor. Both are based solely on data reported from the California refineries.

- 6.2.2.1 <u>Hazardous Air Pollutant Emission Factor</u>. The HAP emission factor was generated by dividing the specific HAP emissions reported by each refinery for each transport mode by the throughput entering the transport mode. Average HAP factors were calculated from the refineries reporting applicable HAP data. Table 6-3 presents the average HAP emission factors (in lb/yr/10⁶ gallons of throughput).
- 6.2.2.2 <u>Throughput Factor</u>. The throughput factor was developed by dividing the throughput entering each transport mode by the crude charge capacity in each refinery. Average throughput factors were calculated from the refineries reporting applicable throughput data. Table 6-4 presents the annual average throughput factors (in 10³ gal/yr/bbl/sday) for each transport mode. The crude charge capacities were taken from the Oil and Gas Journal.³ The throughputs were supplied from the California Refinery Database.

6.3 DATABASE LIMITATIONS

The transfer database has several significant gaps.

Gasoline was not reported as being transported by railcar, and only one refinery reported the transportation of C3's, jet fuel, toluene, and xylene. Therefore, these data may not be representative of transfer mechanisms of refineries throughout the United States.

Sixteen HAP's were reported from all the refineries in the California refinery database; however, no more than 12 were reported by any one refinery, and several of the HAP's were reported by only one refinery.

6.3.1 Hazardous Air Pollutant Emission Factor

Because of the lack of data, no HAP factors were developed for C4 loading in any of the transfer modes. Hazardous air pollutant emission factors for railcar loading were limited to one pollutant (1,3-butadiene) for one refinery product (C3's). Emission factors for six refinery products were generated for tank truck loading. However, three of the products have an emission factor for only one pollutant, and two have factors for only two pollutants.

6.3.2 Throughput Factor

Tank truck loading contains the most complete throughput factors. Only three refinery products (gasoline, diesel, and jet fuel) have factors for marine loading, and only C4's and C3's have a throughput factor for railcar loading.

6.4 REFERENCES

- 1. Evaluation of Air Pollution Regulatory Strategies for Gasoline Marketing Industry. Office of Air Quality Planning and Standards. U.S. Environmental Protection Agency. Washington, D.C. EPA-450/3-84-012a. July 1984.
- Compilation of Air Pollutant Emission Factors. Volume 1: Stationary Point and Area Sources. AP-42. Fourth Edition. U.S. Environmental Protection Agency. Office of Air Quality Planning and Standards. September 1985.
- 3. Thrash, L.A. Annual Refining Survey. Oil and Gas Journal. March 26, 1990.

ANNUAL THROUGHPUTS PER TRANSFER MODE (103 gal/yr) TABLE 6-1.

Marine loading	Confidential	176,000	15,400	8,570 355,000 6,170	Confidential
Transfer Mode Tank truck loading				116,000 10,400 887 1,470 1,450 1,040	Confidential
Railcar loading			11,500	367 31	
Material transferred	Gasoline	Gasoline	Gasoline C4's Diesel	Gasoline Diesel C3's C4's Jet fuel Toluene Xylene	Gasoline
Crude charge capacity (bbls/sd)	132,000	121,400	55,000	145,000	143,000
Refinery	A	ÎΨ	ტ	н	Ð

A blank entry indicates no data were reported. Note:

HAZARDOUS AIR POLLUTANT EMISSIONS FROM CALIFORNIA REFINERIES (1b/yr) TABLE 6-2.

Material processed	НАР	Railcar loading	Tank truck loading	Marine loading	Bulk loading-total emissions
Refinery A					,
Gasoline	Benzene Ethylene dichloride Ethylene dibromide			1,890 32.2 1.3	1,890 32.2 1.3
Refinery B*					
No Data	Benzene Naphthalene Toluene Xylenes				1,080 2.6 1,950 447
Refinery C*					
No Data	No data				
Refinery D*					
Crude	Benzene Chlorobenzene				13
	Chloroform Cresol				0.007
	1,4-Dioxane Ethylene dichloride				93 10.2
					(continued)

Material processed	HAP	Railcar loading	Tank truck loading	Marine loading	Bulk loading-total emissions
Refinery D*, Continued	continued				
	Ethylene dibromide Naphthalene Phenol Styrene				1.73 0.013 0.014 0.65
	Toluene Xylenes				14.43 6.13
Naphtha	nzene rm nne dichlori				27.2 2.62 51.4 0.013 194 21.4
	Etnylene albromide Naphthalene Phenol Styrene Toluene Xylenes				0.045 0.027 0.027 1.36 25.9 12.3
Kerosene	Benzene Chlorobenzene Chloroform 1,4-Dioxane Ethylene dichloride Ethylene dibromide		~		0.04 0.004 0.087 0.317 0.036
					(continued)

gep.004

gep.004

TABLE 6-2. (Continued)

Material processed	НАР	Railcar loading	Tank truck loading	k Marine loading	Bulk loading-total emissions
Refinery H*					
Gasoline	Benzene Toluene Xylenes				0.148 0.37 0.23
Refinery I					
Gasoline	Benzene Toluene Xylenes			506 156 7.99	506 156 7.99
Diesel	Toluene Xylenes		0.0944 0.223	4.99	5.08
Jet Fuel	Toluene Xylenes		0.00164	0.113 0.455	0.114
c3 's	1,3-Butadiene	0.0031	0.146		0.149
Toluene	Toluene		20.8		20.8
Xylene	Xylenes		96.9		96.9

TABLE 6-2. (Continued)

Material processed	НАР	Railcar loading	Tank truck loading	Marine loading	Bulk loading-total emissions
Refinery J					
Gasoline	Benzene Ethylene dichloride		430	214	664
			31 13	190 75	221 88
Refinery K*	-				
Gasoline	Benzene Cresols				2.33
	Naphthalene Phenol Toluene	,			2.62 .025 12.21
	۸yıenes				C6.61

A blank entry indicates no data were reported. Note:

^{*}Data not used for HAP's factor development as emissions not reported by transfer mode.

HAZARDOUS AIR POLLUTANT EMISSION FACTOR, BY MATERIAL TRANSFERRED (1b/10⁶ gallons throughput) TABLE 6-3.

Emission source	Pollutant	Gasoline	Diesel	C3 'S	C4 's	Jet	Toluene	Xylene
Railcar Loading	1,3-Butadiene			0.00844				
Tank Truck Loading	Benzene Ethylene dichloride Ethylene dibromide Toluene Xylenes 1,3-Butadiene	1.31 0.0223 0.00091 0.0948	0.00081	0.014		0.00112	14.4	6.67
Marine Loading	Benzene Ethylene dichloride Ethylene dibromide Naphthalene Toluene Xylenes	23.4 0.255 0.01 7.50 0.644	0.00053 0.00746 0.0168			0.018 0.0737		

A blank entry indicates throughputs or HAP emissions were not reported. Note:

TABLE 6-4. ANNUAL THROUGHPUT FACTOR (10³ gal/yr/bbl/sday crude charge)

Material processed	Railcar loading	Tank truck loading	Marine loading
Gasoline		2.29	.905
Diesel		.8	5.85
C3 's	.0025	0.0717	
C4's	.105	0.0061	
Jet Fuel		0.01	0.0426
Toluene		0.0099	
Xylene		0.0072	
			~~~

Note: A blank entry indicates throughputs were not reported.

### 7.0 TOXIC CHEMICAL RELEASE INVENTORY SYSTEM DATABASE

# 7.1 DESCRIPTION OF TOXIC CHEMICAL RELEASE INVENTORY SYSTEM DATABASE

The Toxic Chemical Release Inventory System (TRIS) database is comprised of information gathered from U. S. Environmental Protection Agency (EPA) Form R, the Toxic Chemical Release Inventory Reporting Form. Section 313 Title III of the Superfund Amendments and Reauthorization Act (SARA) requires every refiner to submit EPA Form R for each of its refining facilities. The EPA Form R consists of four parts:

- facility identification information;
- off-site locations to which wastes with chemicals are transferred;
- chemical-specific information including chemical identity, uses of the chemical in the facility, waste treatment methods and their efficiencies, releases of chemicals to the environment on site, and transfers of the chemical in wastes to off-site locations; and
- supplemental information including additional information on releases of chemicals to the environment on-site, transfers of the chemicals in waste off-site, and waste treatment methods and efficiencies.

The TRIS database is comprised of over 300 chemicals/compounds listed in SARA Title III. However, only 153 of the 190 hazardous air pollutants (HAP's) listed in the 1990 Clean Air Act Amendments are included on the SARA Title III list.

# 7.2 ANALYSIS OF DATA FROM TOXIC CHEMICAL RELEASE INVENTORY SYSTEM

Radian Corporation accessed the EPA's 1989 TRIS database and tabulated reported emissions from petroleum refineries for the 153 HAP's in TRIS. Air releases are divided into just two categories: fugitive and point. Fugitive emissions include releases from source types such as equipment leaks and wastewater

operations. Point emissions include releases from source types such as process vents, storage tanks, and transfer operations. Only 66 of the 153 HAP's were reported as being released from refineries. The database includes 202 refineries from the United States, Puerto Rico, and the Virgin Islands. The emissions data from these refineries are summarized in Tables 7-1 and 7-2.

Table 7-1 ranks the HAP's by the number of facilities reporting releases of each chemical. Total emissions from point sources, fugitive sources, and total air releases (point plus fugitive) are calculated to be 6,936 tons per year (tpy), 12,326 tpy, and 19,262 tpy, respectively. Only 5 chemicals (benzene, toluene, xylenes, ethyl-benzene, and chlorine) are reported by over 100 refineries. These 5 chemicals account for 63.9 percent of the reported emissions by mass of the total air releases. The 10 most commonly reported chemicals account for 71.7 percent of total emissions. Benzene is the most frequently reported HAP, with 184 out of 202 refineries reporting emissions. Benzene constitutes 14.3 percent of the releases.

Table 7-2 ranks each HAP according to total air releases. The top 5 chemicals (toluene, xylenes, benzene, methyl ethyl ketone, and ethyl-benzene), ranked in terms of mass releases, account for 75.2 percent of the total air releases and the top 10 chemicals account for 88 percent. Toluene has the largest emissions, with air releases totalling 5,428 tpy for 182 refineries. It constitutes 28.2 percent of the total air releases.

The average number of chemicals reported for each refinery is six. However; the number of chemicals ranges from as many as 25 to as few as 1.

TED	
G REPOR	
LS BEIN	
CHEMICA	
ENCY OF	
Y FREOU	
RANKED B	
o bempoterim reptnery wris bamarase emissions, ranked by Frequency of Chemicals Being Reported	
DATARASE I	
TRIC	
VERTNER	******
DEPT TO STIM	TOTAL ENTINOME
1090	1001
7.1	
-	á

TABLE	7-1. 1989 PETROLEUM REFINERY TRIS	DATABASE EMISSIONS,	- 11	RANKED BY FREC	FREQUENCY OF C	- 11	BEING KEPOKTED	
					Total	Average		
		Number	Point	Fugitive	air	releases	Torai	000 00 (00
CAS		of	releases	releases	releases	per factlity	reregaes (e +3/	(a ta mic)
number		refineries	(tons/yr)	(LOUS/YI)	7751	15.0	14.3	14.3
71432	Benzene (including benzene from gasoline)	184	1321	3444	5428	29.6	28.2	42.5
108883	Toluene	166	1000	2174	3175	19.1	16.5	58.9
1330207	Xylenes (1somers and mixtures)	154	279	519	798	5.18	4.14	63.1
100414	Ethyr Denzene Chlorine	115	94.0	56.5	151	1.31	0.781	63.9
01303	Chicithe Nambabana	68	49.3	152	201	2.26	1.04	64.9
60000000	naphrhatana Toad compounds	85	1.43	4.34	5.78	0.068	0.0300	64.9
1634044	Methyl tert butvl ether	64	653	140	793	12.4	4.12	69.1
106901	1 3-Butadione	63	32.6	123	155	2.46	0.806	6.69
108952	Dhenol	63	186	171	357	2.66	1.85	711.7
20666666	Chromium compounds	61	63.1	39.8	103	1.69	0.534	72.3
7664393	Hydrogen fluoride (hydroflouric acid)	61	151	116	267	4.38	1.39	73.6
67561	Methanol	61	26.1	265	292	4.78	1.51	75.2
111422	Diethanolamine	09	0.36	28.3	28.6	0.476	0.148	75.3
98828	Cumene	20	290	348	638	12.8	3.31	78.6
9899916	Nickel compounds	20	8.83	1.16	96.6	0.200	0.0518	78.7
7647010	Hydrochloric acid	37	94.2	24.6	119	3.21	0.617	79.3
71556	Methyl chloroform (1,1,1-trichloroethane)	35	0.250	123	123	3.52	0.640	19.9
107211	Ethylene glycol	33	31.1	7.91	39.0	1.18	0.203	80.1
9999915	Manganese compounds	29	2.46	0.63	3.09	0.107	0.016	80.1
107062	Ethylene dichloride (1,2-dichloroethane)	. 28	0.54	4.85	5.39	0.192	0.028	80.2
106934	Ethylene dibromide (dibromoethane)	27	0.54	1.39	1.93	0.071	0.010	80.2
78933	Methyl ethyl ketone (2-butanone)	27	119	2216	2335	86.5	12.1	92.3
56235	Carbon tetrachloride	36	0.16	11.9	12.0	0.463	0.0625	4.76
99999913	Cobalt compounds	76	90.0	0.63	89.0	0.026	50.00.0	4. C
1319773	Cresols/cresylic acid (isomers and mixture)	24	2.82	17.7	20.5	0.854 4.854	907.0	
95476	(1somers	21	74.4	130	502	7.5	1.00	7.50
106423	Xylenes (isomers and mixture)	18	155	233	366	0.12	70.7	0.00
108383	Xylenes (isomers and mixture)	17	59.0	164	223	13.1	0 137	
80666666	Glycol ethers	71	7 99	4.02	1 6 7	1.24	0.0771	6.96
100425	Styrene	77	66.0	11.4	12.4	1.13	0.0644	97.0
97074	bipmenyi	1 6	0	0.88	0.88	0.098	0.00457	97.0
75150	Carbon disulfide	9	32.0	1.22	33.2	5.54	0.173	97.2
50000	Formaldehyde	9	13.4	5.63	19	3.17	0.0986	97.3
9999911	Antimony compounds	ß	0.93	0	0.93	0.186	0.00483	97.3
9066666	Arsenic compounds (inorganic includ. arsine)	ξ	0	0	0	0	0	97.3
108101	Methyl 1sobutyl ketone (hexanone)	ιc	32.3	J 172	204	40.8	1.06	6.86
90666666	Cadmium compounds	7	0	0	0	0	0	5.86
302012	Hydrazine	4	0.21	0.25	0.46	0.115	0.00239	98.3
78875	Propylene dichloride (1,2-dichloropropane)	4	0.38	1.37	1.75	0.438	60600.0	5.86
99999914	Cyanide compounds	m	0.05	0	0.05	0.017	0.000260	e. 86
1336363	Polychlorinated biphenyls (aroclors)	ო	0	0	0	0 :	0	98.3
542756	1,3-Dichloropropene	2	1.13	2.38	ພ ( ທີ່	1.75	0.0162	20.00
75058	Acetonitrile	2	4.49	59.2	63.7	31.8	0.330	7.86.
								(continued)

					Total	Average		
		Number	Point	Fugitive	air	releases	Total	
		TO JUNE	ses se ler	releases	releases	per	releases	Releases
CAS		of nortos	(tobs/vr)	(tons/vr)	(tons/yr)	facility	(wt &)	(cum.wt %)
number	Chemical	Cottonial	27.5	27.3	54.7	27.4	0.284	66
107051	Allyl chloride	<b>4</b>	6.		06	4.5	0.467	4.66
463581	Carbonyl sulfide	7 (	6 00	7.0	87.8	43.9	0.456	6.66
106898	Epichlorophydrin (1-chloro-2,3-epoxypropane)	4 (	20.0		0.05	0.025	0.00026	100
99999910	Mercury compounds	<b>4</b> C	60.0		0	a	0	100
99999917	Selenium compounds	<b>v</b> 1 c		1.25	1.26	0.63	0.00654	100
79016	Trichloroethylene	7 -		0.04	0.04	0.04	0.000208	100
106887	1,2-Epoxybutane	4 -		10.0	0.01	0.01	0.000052	100
123911	1,4-Dioxana (1,4-diethyleneoxide)	٦.	•		0	0	0	100
584849	2,4-Toluene diisocyanate	<b>.</b>	•		0.14	0.14	0.000727	100
79107	Acrylic acid	→ •	0 0			0	0	100
99999905	Beryllium compounds	- <b>-</b> -		90.0	0.04	0.04	0.000208	100
63929	Chloroform	<b>-</b>	80 0		0.08	0.08	0.000415	100
140885	Ethyl acrylate	<b>-</b>		25.	16	16	0.0831	100
75218	Ethylene oxide	٠,			0.25	0.25	0.00130	100
108316	Maleic anhydride	٠.	· ·	1.55	1.55	1.55	0.00805	100
74873	Methyl chloride (chloromethane)		0 13	0.13	0.25	0.25	0.00130	100
80626	Methyl methacrylate	٠.		0.13	0.13	0.13	0.00067	100
75092	Methylene chloride	<b>-</b>	9 0	0.23	0.35	0.35	0.00182	100
127184	Tetrachloroethylene (perchloroethylene)	<b>-</b>	0.0	3.0	9	0	0	100
7550450	Titanium tetrachloride	- <b>.</b> •	2	7.0	0.25	0.25	0.00130	100
108054	Vinyl acetate	-	0.13	21.0				
		Total	6936	12326	19262			

				Lorgi	Average		
	Number	Point	Fugitive	air	releases	Total	
	of	releases	releases	releases	per	releases	Releases
Chemical	refineries	(tons/yr)	(tons/yr)	(tons/yr)	facility	(wt &)	(cum.wt %)
	182	1983	3444	5428	29.8	28.2	28.2
	166	1000	2174	3175	19.1	16.5	44.7
133020/ Agrees (1800mers and mirrounds)	184	1327	1424	2751	15.0	14.3	14.3
	27	119	2216	2335	86.5	12.1	26.4
Metnyl	154	279	519	198	5.18	4.14	30.5
Ethyl-r	64	653	140	793	12.4	4.12	34.7
		066	348	638	12.8	3.31	38.0
Cumene	3 -	155	233	388	21.6	2.01	40.0
	91	186	171	357	5.66	1.85	41.8
	6	26.1	265	292	4.78	1.51	43.4
	107	151	116	267	4.38	1.39	44.7
	70	101	164	223	13.1	1.16	45.9
	3 6	2.65	130	205	9.74	1.06	47.0
	1 4	20 2	172	204	40.8	1.06	48.0
	6	2.0	15.2	201	2.26	1.04	49.1
	60	3	103	155	2.46	908.0	49.9
106990 1,3-Butadiene	50	0.75	271			0.781	50.7
7782505 Chlorine	115	0.40	0.00	101	1.31	10.10	51.3
71556 Methyl chloroform (1,1,1-trichloroethane)	32	0.250	123	123	20.0	0.0	9 1.5
7647010 Hydrochloric acid	37	2.46	9.4.0	611	17:6	0.01	5.2.4
99999907 Chromium compounds	19	63.1	8.6°	103	60.7	10.0	V 66
463581 Carbonyl sulfide	7	06	<b>3</b> 1	06.5	•	24.0	
106898 Epichlorophydrin (1-chloro-2,3-epoxypropane)	2	28.3	39.5	8.78	9 9	000	2001
75058 Acetonitrile	7	4.49	29.5	63.7	31.8	0.000	3.00
107051 Allyl chloride	7	27.5	27.3	54.7	4.12	907.0	6
107211 Ethylene glycol	33	31.1	16.7	39.0	1.18	607.0	4.60
75150 Carbon disulfide	9	32.0	1.22	33.2	9.04	0.173	# u
111422 Diethanolamine	09	0.36	28.2	28.6	0.476	0.148	C. 88
99999903 Glycol ethers		0.31	26.1	26.4	7.7	751.0	
1319773 Cresols/cresylic acid (isomers and mixture)	24	2.82	17.7	20.5	9CR-0	0.100	0.66
	9	13.4	5.63	19	3.17	0.0986	V . V .
		9.5	6.5	16	16	0.0831	100
	12	7.99	6.87	14.9	1.24	0.0771	100.0
	11	0.99	11.4	12.4	1.13	0.0644	100.1
	26	0.16	11.9	12.0	0.463	0.0625	100.2
	20	8.83	1.16	9.98	0.200	0.0518	100.2
TOWN TOWN	85	1.43	4.34	5.78	0.068	0.0300	100.2
	28	0.54	4.85	5.39	0.192	0.028	100.3
	7	1.13	2.38	3.5	1.75	0.0182	100.3
	29	2.46	0.63	3.09	0.107	0.016	100.3
	27	0.54	1.39	1.93	0.071	0.010	100.3
	4	0.38	1.37	1.75	0.438	0.00909	100.3
	-	0	1.55	1.55	1.55	0.00805	100
		0.01	1.25	1.26	0.63	0.00654	100
	1 L	20.0		0.93	0.186	0.00483	100.3
9999911 Antimony compounds	9		9 6	0.88	0.098	0.00457	100.3

TABLE 7-2. (Continued)

						***************************************		
					Total	Average		
		Number	Point	Fugitive	alr	releases	Total	
CAS		of	releases	releases	releases	per	releases	Releases
number	Chemical	refineries	(tons/yr)	(tons/yr)	(tons/yr)	facility	(wt &)	(cum.wt %)
99999913	Cobalt compounds	26	90.0	0.63	0.68	0.026	0,00353	100.3
302012	Hydrazine	4	0.21	0.25	0.46	0.115	0.00239	100.3
127184	Tetrachloroethylene (perchloroethylene)	1	0.08	0.27	0.35	0.35	0.00182	100
108316	Maleic anhydride	-	0.13	0.13	0.25	0.25	0.00130	100
80626	Methyl methacrylate	-	0.13	0.13	0.25	0.25	0.00130	100
108054	Vinyl acetate	-	0.13	0.13	0.25	0.25	0.00130	100
79107	Acrylic acid	-	0	0.14	0.14	0.14	0.000727	100
75092	Methylene chloride	7	0	0.13	0.13	0.13	0.00067	100
140885	Ethyl acrylate	-	0.08	0	0.08	0.08	0.000415	100
99999914	Cyanide compounds	٣	0.05	0	0.05	0.017	0.000260	100.4
99999910	Mercury compounds	7	0.05	0	0.05	0.025	0.00026	100
106887	1,2-Epoxybutane	п	0	0.04	0.04	0.04	0.000208	100
67663	Chloroform	7	0	0.04	0.04	0.04	0.000208	100
123911	1,4-Dloxana(1,4-dlethyleneoxide)	-	0	0.01	0.01	0.01	0.000052	100
584849	2,4-Toluene diisocyanate	1	0	0	0	0	0	100
99999904	Arsenic compounds (inorganic includ. arsine)	3	0	0	0	0	0	100.0
99999905		1	0	0	0	0	0	100
90666666	Cadmium compounds	4	0	0	0	0	0	100.0
1336363	Polychlorinated biphenyls (aroclors)	9	0	0	0	0	0	100.0
99999917	Selenium compounds	2	0	0	0	0	0	100
7550450	Titanium tetrachloride	4	0	0	0	0	0	100
						•		
		Total	6936	12326	19262			